首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant limitation to the practical application of triplex DNA is its requirement for oligopurine tracts in target DNA sequences. The repertoire of triplex-forming sequences can potentially be expanded to adjacent blocks of purines and pyrimidines by allowing the third strand to pair with purines on alternate strands, while maintaining the required strand polarities by combining the two major classes of base triplets, Py.PuPy and Pu.PuPy. The formation of triplex DNA in this fashion requires no unusual bases or backbone linkages on the third strand. This approach has previously been demonstrated for target sequences of the type 5'-(Pu)n(Py)n-3' in intramolecular complexes. Using affinity cleaving and DNase I footprinting, we show here that intermolecular triplexes can also be formed at both 5'-(Pu)n(Py)n-3' and 5'-(Py)n(Pu)n-3' target sequences. However, triplex formation at a 5'-(Py)n(Pu)n-3' sequence occurs with lower yield. Triplex formation is disfavored, even at acid pH, when a number of contiguous C+.GC base triplets are required. These results suggest that triplex formation via alternate strand recognition at sequences made up of blocks of purines and pyrimidines may be generally feasible.  相似文献   

2.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

3.
Triple helix formation requires a polypurine- polypyrimidine sequence in the target DNA. Recent works have shown that this constraint can be circumvented by using alternate strand triplex-forming oligonucleotides. We have previously demonstrated that (T,G)-containing triplex- forming oligonucleotides may adopt a parallel or an antiparallel orientation with respect to an oligopurine target, depending upon the sequence and, in particular, upon the number of 5'-GpT-3' and 5'-TpG-3' steps [Sun et al. (1991) C.R. Acad. Sci. Paris Ser III, 313, 585-590]. A single (T,G)-containing oligonucleotide can therefore interact with two oligopurine stretches which alternate on the two strands of the target DNA. The (T,G) switch oligonucleotide contains a 5'-part targeted to one of the oligopurine sequences in a parallel orientation followed by a 3'-part that adopts an antiparallel orientation with respect to the second oligopurine sequence. We show that a limitation to the stability of such a triplex may arise from the instability of the antiparallel part, composed of reverse-Hoogsteen C.GxG and T.AxT base triplets. Using DNase I footprinting and ultraviolet absorption experiments, we report that a benzo[e]pyridoindole derivative [(3-methoxy- 7H-8-methyl-11-[(3'-amino-propyl) amino] benzo[e]pyrido [4,3-b]indole (BePI)], a drug interacting more tightly with a triplex than with a duplex DNA, strongly stabilizes triplexes with reverse-Hoogsteen C.GxG and T.AxT triplets thus allowing a stabilization of the triplex-forming switch (T,G) oligonucleotide on alternating oligopurine- oligopyrimidine 5'-(Pu)14(Py)14-3' duplex sequences. These results lead to an extension of the range of oligonucleotide sequences for alternate strand recognition of duplex DNA.  相似文献   

4.
Oligonucleotide-directed triple helix formation is mostly restricted to oligopyrimidine*oligopurine sequences of double helical DNA. An interruption of one or two pyrimidines in the oligopurine target strand leads to a strong triplex destabilisation. We have investigated the effect of nucleotide analogues introduced in the third strand at the site opposite the base pair inversion(s). We show that a 3-nitropyrrole derivative (M) discriminates G*C from C*G, A*T and T*A in the presence of a triplex-specific ligand (a benzo[e]pyridoindole derivative, BePI). N6-methoxy-2,6-diaminopurine (K) binds to an A*T base pair better than a T*A, G*C or C*G base pair. Some discrimination is still observed in the presence of BePI and triplex stability is markedly increased. These findings should help in designing BePI-oligonucleotide conjugates to extend the range of DNA sequences available for triplex formation.  相似文献   

5.
D M Gowers  J Bijapur  T Brown  K R Fox 《Biochemistry》1999,38(41):13747-13758
DNase I footprinting has been used to study the formation of parallel triplexes at oligopurine target sequences which are interrupted by pyrimidines at regular intervals. TA interruptions are targeted with third strand oligonucleotides containing guanine, generating G x TA triplets, while CG base pairs are targeted with thymine, forming T x CG triplets. We have attempted to optimize the stability of these complexes by varying the base composition and sequence arrangement of the target sites, and by replacing the third strand thymines with the positively charged analogue 5-(1-propargylamino)dU (U(P)). For the target sequence (AAAT)(5)AA, in which pyrimidines are positioned at every fourth residue, triplex formation with TG-containing oligonucleotides is only detected in the presence of a triplex-binding ligand, though stable triplexes were detected at the target site (AAAAAT)(3)AAAA. Triplex stability at targets containing pyrimidines at every fourth residue is increased by introducing guanines into the duplex repeat unit using the targets (AGAT)(5)AA and (ATGA)(5)AA. In contrast, placing C(+) x GC triplets on the 5'-side of G x TA, using the target (AGTA)(5)TT, produces complexes of lower stability. We have attempted further to increase the stability of these complexes by using the positively charged thymine base analogue U(P), and have shown that (TU(P)TG)(5)TT forms a more stable complex with target (AAAT)(5)AA than the unmodified third strand, generating a footprint in the absence of a triplex-binding ligand. Triplex formation at (AGTA)(5)AA is improved by using the modified oligonucleotide (TCGU(P))(5)TT, generating a complex in which the charged triplets C(+) x GC and U(P) x AT alternate with uncharged triplets. In contrast, placing U(P) x AT triplets adjacent to C(+) x GC, using the third strand oligonucleotide (U(P)CGT)(5)TT, reduces triplex formation, while the third strand with both substitutions, (U(P)CGU(P))(5)TT, produces a complex with intermediate stability. It appears that, although adjacent U(P) x AT triplets form stable triplexes, placing U(P) x AT adjacent to C(+) x GC is unfavorable. Similar results were obtained with fragments containing CG inversions within the oligopurine tract, though triplexes at (AAAAAC)(3)AA were only detected in the presence of a triplex-binding ligand. Placing C(+) x GC on the 5'-side of T x CG triplets also reduces triplex formation, while a 3'-C(+) x GC produces complexes with increased stability.  相似文献   

6.
C de los Santos  M Rosen  D Patel 《Biochemistry》1989,28(18):7282-7289
High-resolution exchangeable proton two-dimensional NMR spectra have been recorded on 11-mer DNA triple helices containing one oligopurine (R)n and two oligopyrimidine (Y)n strands at acidic pH and elevated temperatures. Our two-dimensional nuclear Overhauser effect studies have focused on an 11-mer triplex where the third oligopyrimidine strand is parallel to the oligopurine strand. The observed distance connectivities establish that the third oligopyrimidine strand resides in the major groove with the triplex stabilized through formation of T.A.T and C.G.C+ base triples. The T.A.T base triple can be monitored by imino protons of the thymidines involved in Watson-Crick (13.65-14.25 ppm) and Hoogsteen (12.9-13.55 ppm) pairing, as well as the amino protons of adenosine (7.4-7.7 ppm). The amino protons of the protonated (8.5-10.0 ppm) and unprotonated (6.5-8.3 ppm) cytidines in the C.G.C+ base triple provide distinct markers as do the imino protons of the guanosine (12.6-13.3 ppm) and the protonated cytidine (14.5-16.0 ppm). The upfield chemical shift of the adenosine H8 protons (7.1-7.3 ppm) establishes that the oligopurine strand adopts an A-helical base stacking conformation in the 11-mer triplex. These results demonstrate that oligonucleotide triple helices can be readily monitored by NMR at the individual base-triple level with distinct markers differentiating between Watson-Crick and Hoogsteen pairing. Excellent exchangeable proton spectra have also been recorded for (R+)n.(Y-)n.(Y+)n 7-mer triple helices with the shorter length permitting spectra to be recorded at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
A scenario is proposed by which non-enzymatic self-replication of short RNA molecules could occur. The hypothesis is illustrated for the self-replication of an oligopyrimidine (Y) strand. The successful replication of Y requires a series of plausible steps. The first, experimentally feasible, step involves the template-directed polynucleotide synthesis, based on Watson-Crick base pairing, of an oligopurine (R) strand using Y as the template, and chemically activated mononucleotides as the building blocks. This step will result in the formation of an oligopyrimidine.oligopurine (YR) double helix. The second step requires the use of the double helix as the template for the synthesis of a second oligopyrimidine (Y') strand from activated pyrimidine monomers. This synthesis could be facilitated by the binding of the monopyrimidines in the major groove of the YR double helix, via Hoogsteen-type base pairing with the R strand, establishing in that sense triple helix recognition. This step, if successful, should result in the formation of a new strand, Y', that runs parallel to the oligopurine strand. Y' differs from Y in that all 3'-5' phosphodiester linkages in Y are replaced by 5'-3' linkages in Y'. The resulting triple helix (YRY') is in dynamic equilibrium with YR and free Y'. In subsequent steps, unassociated Y' directs the synthesis of the complementary oligopurine (R') strand forming a new double helix Y'R' that may direct the synthesis of an oligopyrimidine strand, Y, that is expected to be identical to the first strand that started the whole sequence. An attempt is made to generalize the above hypothesis to mixed oligonucleotides containing all four bases and identify the limitations of this hypothesis.  相似文献   

9.
The specificity of binding of Watson-Crick base pairs by third strand nucleic acid residues via triple helix formation was investigated in a DNA pyrimidine triplex motif by thermal melting experiments. The host duplex was of the type A10-X-A10: T10-Y-T10, and the third strand T10-Z-T10, giving rise to 16 possible triplexes with Z:XY inserts, 4 duplexes with the Watson-Crick base pairs (XY) and 12 duplexes with mismatch pairs (XZ), all of whose stabilities were compared. Two Z:XY combinations confirm the primary binding of AT and GC target pairs in homopurine.homopyrimidine sequences by T and C residues, respectively. All other Z:XY combinations in the T:AT environment result in triplex destabilization. While some related observations have been reported, the present experiments differ importantly in that they were performed in a T:AT nearest neighbor environment and at physiological ionic strength and pH, all of which were previously untested. The conclusions now drawn also differ substantially from those in previous studies. Thus, by evaluating the depression in Tm due to base triplet mismatches strictly in terms of third strand residue affinity and specificity for the target base pair, it is shown that none of the triplet combinations that destabilize qualify for inclusion in the third strand binding code for the pyrimidine triplex motif. Hence, none of the mismatch triplets afford a general way of circumventing the requirement for homopurine.homopyrimidine targets when third strands are predominated by pyrimidines, as others have suggested. At the same time, the applicability of third strand binding is emphasized by the finding that triplexes are equally or much more sensitive to base triplet mismatches than are Watson-Crick duplexes to base pair mismatches.  相似文献   

10.
Rhee S  Han Zj  Liu K  Miles HT  Davies DR 《Biochemistry》1999,38(51):16810-16815
Extended purine sequences on a DNA strand can lead to the formation of triplex DNA in which the third strand runs parallel to the purine strand. Triplex DNA structures have been proposed to play a role in gene expression and recombination and also have potential application as antisense inhibitors of gene expression. Triplex structures have been studied in solution by NMR, but have hitherto resisted attempts at crystallization. Here, we report a novel design of DNA sequences, which allows the first crystallographic study of DNA segment containing triplexes and its junction with a duplex. In the 1.8 A resolution structure, the sugar-phosphate backbone of the third strand is parallel to the purine-rich strand. The bases of the third strand associate with the Watson and Crick duplex via Hoogsteen-type interactions, resulting in three consecutive C(+).GC, BU.ABU (BU = 5-bromouracil), and C(+).GC triplets. The overall conformation of the DNA triplex has some similarity to the B-form, but is distinct from both A- and B-forms. There are large changes in the phosphate backbone torsion angles (particularly gamma) of the purine strand, probably due to the electrostatic interactions between the phosphate groups and the protonated cytosine. These changes narrow the minor groove width of the purine-Hoogsteen strands and may represent sequence-specific structural variations of the DNA triplex.  相似文献   

11.
The influence of cations on the capacity of five oligopurine.oligopyrimidine mirror repeat sequences to adopt intramolecular triplexes (the usual H-y3 isomer and/or the rare H-y5 isomer) in recombinant plasmids was investigated. Unexpectedly, the presence of certain metal ions (magnesium, zinc, manganese, and calcium) stabilized the (GAA)4TTCGC(GAA)4 insert in the rare H-y5 when cloned into either of two different sequence backgrounds. Alternatively, either shortening or lengthening the sequence at the central interruption, which becomes the loop of the triplex, led to the formation of the canonical H-y3 under all conditions tested. Similarly, other oligopurine.oligopyrimidine mirror repeat sequences (i.e. (GAA)8 or (GGA)8) formed only the H-y3 under all experimental conditions. All triplexes were stabilized by negative supercoiling at pH 5.0; chemical probe and primer extension analyses served as critical structural tools. Hence, the nature of the central interruption sequence (the loop) of the mirror repeat is important for the stabilization of the H-y5. This region may be important for metal ion binding in the initial stages of triplex formation and thus may play a critical role in determining which isomer is formed. The possible biological role of a DNA sequence adopting three different conformations is discussed.  相似文献   

12.
Triple helices with G*G.C and A*A.T base triplets with third GA strands either parallel or antiparallel with respect to the homologous duplex strand have been formed in presence of Na (+) or Mg(2+) counterions. Antiparallel triplexes are more stable and can be obtained even in presence of only monovalent Na(+) counterions. A biphasic melting has been observed, reflecting third strand separation around 20 degrees C followed by the duplex -> coil transition around 63 degrees C. Parallel triplexes are far less stable than the antiparallel ones. Their formation requires divalent ions and is observed at low temperature and in high concentration conditions. Different FTIR signatures of G*G.C triplets in parallel and antiparallel triple helices with GA rich third strands have been obtained allowing the identification of such base triplets in triplexes formed by nucleic acids with heterogeneous compositions. Only S-type sugars are found in the antiparallel triplex while some N-type sugar conformation is detected in the parallel triplex.  相似文献   

13.
We reported previously on NMR studies of (Y+)n.(R+)n(Y-)n DNA triple helices containing one oligopurine strand (R)n and two oligopyrimidine strands (Y)n stabilized by T.AT and C+.GC base triples [de los Santos, C., Rosen, M., & Patel, D. J. (1989) Biochemistry 28, 7282-7289]. Recently, it has been established that guanosine can recognize a thymidine.adenosine base pair to form a G.TA triple in an otherwise (Y+)n.(R+)n(Y-)n triple-helix motif. [Griffin, L. C., & Dervan, P. B. (1989) Science 245, 967-971]. The present study extends the NMR research to the characterization of structural features of a 31-mer deoxyoligonucleotide that folds intramolecularly into a 7-mer (Y+)n.(R+)n(Y-)n triplex with the strands linked through two T5 loops and that contains a central G.TA triple flanked by T.AT triples. The G.TA triplex exhibits an unusually well resolved and narrow imino and amino exchangeable proton and nonexchangeable proton spectrum in H2O solution, pH 4.85, at 5 degrees C. We have assigned the imino protons of thymidine and amino protons of adenosine involved in Watson-Crick and Hoogsteen pairing in T.AT triples, as well as the guanosine imino and cytidine amino protons involved in Watson-Crick pairing and the protonated cytidine imino and amino protons involved in Hoogsteen pairing in C+.GC triples in the NOESY spectrum of the G.TA triplex. The NMR data are consistent with the proposed pairing alignment for the G.TA triple where the guanosine in an anti orientation pairs through a single hydrogen bond from one of its 2-amino protons to the 4-carbonyl group of thymidine in the Watson-Crick TA pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have used DNase I footprinting to examine DNA triple helix formation at a 12 base pair oligopurine.oligopyrimidine sequence, using oligonucleotides that contain combinations of 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine (bis-amino-U, BAU) and 3-methyl-2-aminopyridine (MeP) in place of T and C, respectively. This combination acts cooperatively to enable high affinity triple helix formation at physiological pH. The affinity depends on the number of substitutions and their arrangement; oligonucleotides in which these analogues are evenly distributed throughout the third strand bind much better than those in which they are clustered together.  相似文献   

15.
Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine?pyrimidine (Pu?Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))?(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5'-C(2)TC(5)TC(2)-3', an oligonucleotide complementary to the 3'-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu?Py sequences may be pertinent to gene regulation.  相似文献   

16.
The goal of this study was to address antiparallel triplex formation at duplex targets that do not conform to a strict oligopurine.oligopyrimidine motif. We focused on the ability of natural bases and base analogs incorporated into oligonucleotide third strands to bind to so-called CG inversions. These are sites where a cytosine base is present in an otherwise purine-rich strand of a duplex target. Using a 26-base-triplet test system, we found that of the standard bases, only thymine (T) shows substantial binding to CG inversions. This is quantitatively similar to the report of Beal and Dervan [Science (1991), 251, 1360-1363]. Binding to CG inversions was only slightly weaker than binding to AT base pairs. Binding of T to CG inversions was also evaluated in two other sequences, with qualitatively similar results. Six different analogs of thymine were also tested for binding to CG inversions and AT base pairs. Significant changes in affinity were observed. In particular, 5-fluoro-2'-deoxyuridine was found to increase affinity for CG inversions as well as for AT base pairs. Studies with oligonucleotides containing pyridin-2-one or pyridin-4-one suggest that thymine O4 plays a critical role in the T.CG interaction. Possible models to account for these observations are discussed.  相似文献   

17.
K R Fox 《Nucleic acids research》1994,22(11):2016-2021
We have used DNase I footprinting to assess triple helix formation at target sites containing the sequences A6G6.C6T6 and G6A6.T6C6. These sequences can be recognized by the acridine-linked oligopyrimidines Acr-T5C5 and Acr-C5T5 respectively at low pH, using well-characterised T.AT and C+.GC triplets. At pH 7.5 A6G6.C6T6 is specifically bound by Acr-G5T5, utilising G.GC and T.AT triplets in which the third strand runs antiparallel to the purine strand of the duplex. This interaction requires the presence of magnesium ions. No interaction was detected with Acr-T5G5, an oligonucleotide designed to form parallel G.GC and T.AT triplets. In contrast neither Acr-T5G5 nor Acr-G5T5 produced DNase I footprints with the target sequence G6A6.T6C6. These results suggest that, in an antiparallel R.RY triple helix, the T.AT triplet is weaker than the G.GC triplet. We find no evidence for the formation of structures containing parallel G.GC triplets.  相似文献   

18.
A directional nucleation-zipping mechanism for triple helix formation   总被引:2,自引:1,他引:1  
A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T·A base pair by a C·G pair at either the 5′ or the 3′ end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5′ side of the triplex (referred to as the 5′ side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5′ end to the 3′ end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5′ than at the 3′ duplex–triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression.  相似文献   

19.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

20.
The capacity of four oligopurine.oligopyrimidine (pur.pyr) sequences with different lengths of interruptions in the center [GAA)4(N)n(GAA)4G) (n = 3, 5, 7, and 9) to adopt intramolecular DNA triplexes was evaluated in recombinant plasmids. The hyperreactive patterns of the pur.pyr inserts to specific chemical probes (OsO4, diethyl pyrocarbonate, and dimethyl sulfate) at the base pair level demonstrate that intramolecular triplexes with identical 12-base triads in the stem but with different loop sizes (4, 6, 8, and 10 bases) can form in supercoiled plasmids. Furthermore, the extent of OsO4 modification was measured as a function of temperature and of average negative supercoil density. In addition, the transition free energy of B-DNA to triplexes at pH 4.5 was determined by two-dimensional electrophoresis. These comparative studies show that longer loops require more supercoil energy for triplex formation and are less thermostable than triplexes with shorter loops. Also, it may be that not only the loop size but the base composition of the loop region affects the structural transition and triplex stability. Thus, these results significantly broaden the range of natural pur.pyr sequences that may adopt triplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号