首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The question of whether “recurrent” laryngeal carcinoma is truly a new tumour with a clonal origin that differs from that of the primary tumour has remained unanswered. The objective of this study was to determine whether recurrent tumours have the same genetic basis as primary tumours, as the answer to this question is important for the development of treatment strategies.

Materials and Methods

Matched samples consisting of primary tumour, recurrent tumour and normal tissue were obtained from the same patient. A total of 37 patients with laryngeal cancer were examined for loss of heterozygosity (LOH) on the 3p, 5p, 7q, 8p, 9p, 13p, 17p and 18q chromosomal arms using PCR to amplify microsatellite markers. All patients were routinely followed up and 5-year survival rates were calculated using directly calculating method and Kaplan-Meier''s method.

Results

A total of 28 out of 37 (75.6%) patients showed LOH at a minimum of one locus, and 19 out of 37 (51.3%) patients showed LOH at two loci. Primary and recurrent tumours in each patient showed identical allelic loss patterns and incidence rates. Patients without LOH had a longer average time to recurrence than patients with LOH (P<0.05). Additionally, patients with LOH had a longer average smoking duration prior to surgery than patients without LOH (P<0.05). The 5-year survival rates were 32.14%in patients with LOH versus 44.4% in patients without LOH.

Conclusions

The data indicate that primary and recurrent tumours have the same clonal origin. This result implies that we failed to radically resect the primary tumours and/or micrometastases in these patients. Consequently, some form of adjunctive therapy may be necessary. Additionally, the data indicate that the recurrence of laryngeal squamous cell carcinoma is closely related to chromosomal aberrations (specifically LOH).  相似文献   

2.
Timing and role of p53 gene mutation in the recurrence of glioma   总被引:5,自引:0,他引:5  
Recently a 17p deletion and p53 gene mutations were reported in human gliomas, but the relationship of the timing of p53 gene mutation and oncogenesis of glioma is still obscure. We examined eight pairs of primary and recurrent gliomas. Four of eight had a histological malignant transformation. In the group with malignant transformation, three out of four pairs had a mutation in the p53 gene only in recurrence. None of the mutations in either primary or recurrent glioma was detected in the group with no histological change. All point mutations occurred within the evolutionarily conserved regions. This suggests that the p53 mutations occurred during the progression and were important in the malignant transformation in the some kinds of gliomas.  相似文献   

3.
Molecular cytogenetic and LOH analyses of non-small cell lung cancer (NSCLC) have shown frequent allelic deletions in a variety of chromosomes where tumour suppressor genes are located. Allelic loss at 9p21 (p16 locus), 17p13 (p53) and 5q21(APC) has been frequently described in NSCLC and has also been described in premalignant epithelial lesions of the bronchus and normal bronchial cells. These findings suggest that a tissue field of somatic genetic alterations precedes the histopathological phenotypic changes of carcinoma. Similar changes have been described in oral and laryngeal epithelial tumours associated with smoke exposure. We previously reported frequent LOH at 5q21, 9p21 and TP53 in tumor cells and peritumoral normal bronchial cells from surgically resected NSCLC. We now analyze 96 cases of normal oral exfoliative cytology in which normal epithelial cells were obtained: 43 cases from smoker patients with NSCLC diagnosis, 33 smoker patients with no evidence of malignancy and 20 non-smoker patients with no evidence of tumour. All groups had a similar age and sex distribution. PCR amplification was performed utilising the specific markers D5S346, D9S157 and TP53. In normal oral mucosae cells from patients with NSCLC, we found that 21% of the informative cases showed LOH at any of the three analyzed loci distributed as follows: 14.3% of the informative cases showed LOH at 5q21, 7.7% at 9p21 and 22.2% at TP53. Within the smoker risk group only one case (4% of the informative cases) showed LOH at TP53, while no LOH was found at 5q21 or 9p21. No LOH was found in non-smokers. In conclusion, our results show that a significant number of patients with NSCLC have LOH at TP53, 5q21 and 9p21 in normal oral mucosae, while LOH at these loci is unusual in similar cells obtained from patients with no evidence of malignancy. Our study demonstrates that LOH studies can detect smoker patients with a mutated genotype in normal epithelial cells. Further prospective studies may confirm whether LOH studies can detect patients with a higher risk of NSCLC.  相似文献   

4.
In oligodendrogliomas, 1p loss of heterozygosity (LOH) is a predictor of good prognosis and treatment response. In contrast, in uveal melanomas, LOH of chromosome 3 has been linked to poor prognosis and downregulation of Hsp27. In the present study, we have analyzed the expression of heat-shock proteins (Hsps) to characterize subtypes of gliomas and their histopathologic features and to correlate with other molecular markers including LOH of 1p. Biopsies from patients with primary gliomas (n = 65) were analyzed by immunohistochemistry, chromogenic in situ hybridization and fluorescent in situ hybridization and methylation-specific PCR (MSP). Elevated Hsp27 and total Hsp70 expression levels were associated with high-grade astrocytomas (p = 0.0001 and p = 0.01, respectively). In grade III oligodendrogliomas, the Hsp27 levels were significantly higher (p = 0.03). Low O6-methylguanine-DNA methyltransferase (MGMT) expression was associated with grade II astrocytomas. Elevated β-catenin expression was associated with grade III/IV astrocytomas (p = 0.003); p53 (+) tumors were more frequently found in grade III/IV astrocytomas (p = 0,001). LOH on 1p was associated with oligodendroglial tumours. In addition, a higher Hsp27 expression correlated with LOH of 1p (p = 0.017); this was also tested in two glioma cell lines. MSP was successful in only six samples. No significant correlations were found for the other markers. In conclusion, in oligodendroglial tumors, Hsp27 appeared as a surrogate marker of LOH of 1p which could also help to predict the disease prognosis. In gliomas, p53, Hsp27, Hsp70, MGMT, and β-catenin correlated with histopathological characteristics, suggesting that these markers could predict the disease outcome and the response to treatments.  相似文献   

5.
Tumor-specific alterations at the p53 gene locus were analyzed in 40 human brain tumor samples. Gliomas were more prevalent in young males and meningiomas in old females. Structural changes at the intron 1 region of the p53 gene were analyzed in these tumors by Southern blotting. Among the 40 tumors, 33 were informative and 21 of these (63.6%) informative cases showed loss of heterozygosity (LOH). This is the first report showing LOH at the intron 1 region of p53 gene in human brain tumors. The level of p53 mRNA, p53 protein and Ser 392 phosphorylated p53 protein were also analyzed in all tumor samples. Normal sized p53 mRNA and protein were present in all the tumor samples; however, their levels were 1.5- to 4-fold higher compared to the control suggesting deregulated p53 pathway in these tumors. No correlation was found between LOH status and the levels of p53 mRNA and protein. In all high-grade glioblastomas majority of the p53 protein existed as Ser 392 phosphorylated form as compared to low-grade gliomas. In addition, the percentage of Ser 392 phosphorylated form of p53 protein was lower in meningiomas and other brain tumor types irrespective of tumor grade. These results suggest involvement of Ser 392 phosphorylated form of p53 protein during the later stages of glioma development. These results also indicate that deregulation of p53 gene could occur at various steps in p53 pathway and suggest an overall deregulation of p53 gene in most brain tumor types.  相似文献   

6.
A sample of 114 primary breast tumors and corresponding constitutional DNA were tested for loss of heterozygosity (LOH) of the YNZ22 and p53 genes, both located in the 17p13 region. Loss of the p53 allele was found in 28 of 44 primary breast carcinomas (64%). In contrast LOH in only 26 of 61 tumors (43%) was detected with the variable number of tandem repeats (VNTR) probe YNZ22 mapping at 17p13.3 close to the p53 locus at 17p13.1. Among 19 tumors informative for both probes allele loss at 17p13.3 never occurred without p53 involvement. These data suggest, that p53 is the target of 17p13 allelic deletions in human breast cancer. Immunohistochemistry showed overexpression of the p53 protein in 25 of 50 cases (50%) presumably reflecting activating point mutations. Overexpression was not correlated with allele loss but seemed to be closely related to the presence of point mutations in this study. No homozygous deletions or rearrangements of the p53 gene were detected. This would argue for an important role of heterozygous p53 mutations in human breast cancer.  相似文献   

7.
Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.  相似文献   

8.
The present study aimed at detection of P53 gene mutations in cells of urinary bladder neoplasms, as the mutations may be regarded as an independent prognostic factor for progression and recurrence of tumours. In the study, 82 patients with clinically diagnosed urinary bladder tumour were included. The control was composed of DNA samples from urine and blood of 202 healthy patients. Exons 5-8 of the P53 gene were screened for mutations by using multitemperature single-strand conformational polymorphism (MSSCP) analysis. Samples with abnormal MSSCP patterns were subjected to direct sequencing. The frequency of mutations in exons 5-8 of the P53 gene in patients with bladder cancer was lower (3.3% in grade G1, 24% in G2, and 39% in G3) than the data reported in the literature. We found a higher percentage of polymorphism at codon 213 of the P53 gene in bladder cancer patients (6%), compared with the values in the reference group (2.5%). These results were matched with those of the loss of heterozygosity (LOH) analysis. In conclusion, mutations were found mainly in more advanced histopathological and clinical stages of the disease and at the CIS stage (carcinoma in situ). It cannot be excluded that the observed polymorphism at codon 213 may be a predisposing factor for urinary bladder carcinoma development.  相似文献   

9.
Mutation analysis of p53 in ovarian tumors by DHPLC   总被引:5,自引:0,他引:5  
Up to now, ovarian carcinomas represent a major health problem among female cancers because they are the leading cause of death from gynecological malignancy. A high proportion of these tumors selects for mutations in the p53 gene. There is evidence that inactivation of the p53 protein could indicate poor prognosis and chemoresistance of patients. To set up a fast and sensitive test for p53 defects in tumor tissues, we analyzed ovarian cancer cells by denaturing high-performance liquid chromatography (DHPLC). A primer set spanning the whole coding region of p53 with seven fragments was designed and appropriate heteroduplex detection in DHPLC analysis was elaborated. The analysis of 45 ovarian tumor specimens yielded 17 genetic alterations (38%) occurring exclusively in the malignant tissue of the patients. In addition, frequent polymorphisms present in normal compared to tumor tissue could serve as a tool for the rapid identification of loss of heterozygosity (LOH) in the tumor. We observed that LOH in intron 2 or 3 correlated well with a lack of one allele in mutated fragments. In conclusion, DHPLC screening appears to be a sensitive and effective test for genetic alterations in tumors with p53 involvement. Since p53 mutations point to a poor prognosis state in several cancers, a fast screening of tumor material for genetic variations may have implications for further individual treatment of patients.  相似文献   

10.
Although the occurrence of bladder cancer is common, the molecular events underlying the pathogenesis of this cancer remain ill-defined. A loss of heterozygosity (LOH) at specific chromosomal loci may predispose individuals to the development of bladder cancer but this has not been examined in detail. Furthermore, the role that deletion or inactivation of putative tumour suppressor genes might play in the genesis of bladder cancer has not been established. In this study, allelic deletion analysis on the short arm of chromosome 17 of patients with primary bladder tumours failed to show deletion at 17p13 (0/7), a region known to contain the p53 tumour suppressor gene. Chromosome 11p15 showed allelic deletion at the IGF2 locus (2/7: 29%) and the PTH locus (1/11: 9%). However, no deletion was observed at the CALCA locus (0/6). LOH at 11p13, a region containing the Wilm's tumour suppressor gene (WT1), was also studied. Analysis of LOH at 11p13 showed deletion at the CAT locus (13/18: 72%), the J/D11S414 locus (5/15: 33%), the WT1 locus (7/14: 50%) and the FSHB locus (6/16: 38%). The significance of these findings is discussed.  相似文献   

11.
The Czech Republic has one of the highest incidences of colorectal cancer (CRC) in Europe. To evaluate whether sporadic CRCs in Czech patients have specific mutational profiles we analysed somatic genetic changes in known CRC genes (APC, KRAS, TP53, CTNNB1, MUTYH and BRAF, loss of heterozygosity (LOH) at the APC locus, microsatellite instability (MSI), and methylation of the MLH1 promoter) in 103 tumours from 102 individuals. The most frequently mutated gene was APC (68.9% of tumours), followed by KRAS (31.1%), TP53 (27.2%), BRAF (8.7%) and CTNNB1 (1.9%). Heterozygous germline MUTYH mutations in 2 patients were unlikely to contribute to the development of their CRCs. LOH at the APC locus was found in 34.3% of tumours, MSI in 24.3% and MLH1 methylation in 12.7%. Seven tumours (6.9%) were without any changes in the genes tested. The analysis yielded several findings possibly specific for the Czech cohort. Somatic APC mutations did not cluster in the mutation cluster region (MCR). Tumours with MSI but no MLH1 methylation showed earlier onset and more severe mutational profiles compared to MSI tumours with MLH1 methylation. TP53 mutations were predominantly located outside the hot spots, and transitions were underrepresented. Our analysis supports the observation that germline MUTYH mutations are rare in Czech individuals with sporadic CRCs. Our findings suggest the influence of specific ethnic genetic factors and/or lifestyle and dietary habits typical for the Czech population on the development of these cancers.  相似文献   

12.
Various genetic loci harboring oncogenes, tumor suppressor genes, and genes for calcium receptors have been implicated in the development of parathyroid tumors. We have carried out loss of heterozygosity (LOH) studies in chromosomes 1p, 1q, 3q, 6q, 11q, 13q, 15q, and X in a total of 89 benign parathyroid tumors. Of these, 28 were sporadic parathyroid adenomas from patients with no family history of the disease, 41 were secondary parathyroid tumors, 5 were from patients with a history of previous irradiation to the neck, 12 were from patients with a family history of hyperparathyroidism, and 3 were parathyroid tumors related to multiple endocrine neoplasia type 1 (MEN1). In addition, we determined the chromosomal localization of a second putative calcium-sensing receptor, CaS, for inclusion in the LOH studies. Based on analysis of somatic cell hybrids and fluorescent in situ hybridization to metaphase chromsomes, the gene for CaS was mapped to chromosomal region 2q21-q22. The following results were obtained from the LOH studies: (1) out of the 24 tumors that showed LOH, only 4 had more than one chromosomal region involved, (2) in the tumours from uremic patients, LOH of chromosome 3q was detected in a subset of the tumors, (3) LOH of the MEN1 region at 11q13 was the most common abnormality found in both MEN1-related and sporadic parathyroid tumours but was not a feature of the other forms of parathyroid tumors, (4) LOH in 1p and 6q was not as frequent as previously reported, and (5) tumor suppressor genes in 1q and X might have played a role, particularly on the X chromosome, in the case of familial parathyroid adenomas. We therefore conclude that the tumorigenesis of familial, sporadic, and uremic hyperparathyroidism involves different genetic triggers in a non-progressive pattern. Received: 28 October 1996 / Revised: 16 November 1996  相似文献   

13.

Background

To investigate the dynamics of inter- and intratumoral molecular alterations during tumor progression in recurrent gliomas.

Methodology/Principal Findings

To address intertumoral heterogeneity we investigated non- microdissected tumor tissue of 106 gliomas representing 51 recurrent tumors. To address intratumoral heterogeneity a set of 16 gliomas representing 7 tumor pairs with at least one recurrence, and 4 single mixed gliomas were investigated by microdissection of distinct oligodendroglial and astrocytic tumor components. All tumors and tumor components were analyzed for allelic loss of 1p/19q (LOH 1p/19q), for TP53- mutations and for R132 mutations in the IDH1 gene. The investigation of non- microdissected tumor tissue revealed clonality in 75% (38/51). Aberrant molecular alterations upon recurrence were detected in 25% (13/51). 64% (9/14) of these were novel and associated with tumor progression. Loss of previously detected alterations was observed in 36% (5/14). One tumor pair (1/14; 7%) was significant for both. Intratumoral clonality was detected in 57% (4/7) of the microdissected tumor pairs and in 75% (3/4) of single microdissected tumors. 43% (3/7) of tumor pairs and one single tumor (25%) revealed intratumoral heterogeneity. While intratumoral heterogeneity affected both the TP53- mutational status and the LOH1p/19q status, all tumors with intratumoral heterogeneity shared the R132 IDH1- mutation as a common feature in both their microdissected components.

Conclusions/Significance

The majority of recurrent gliomas are of monoclonal origin. However, the detection of divertive tumor cell clones in morphological distinct tumor components sharing IDH1- mutations as early event may provide insight into the tumorigenesis of true mixed gliomas.  相似文献   

14.
Deletion of chromosome 10 is one of the most common chromosomal alterations in glioma. At 10p15, the telomeric region of the short arm of chromosome 10, loss of heterozygosity (LOH) has been frequently observed by microsatellite analysis, suggesting the presence of a tumor suppressor gene. We examined LOH in 34 gliomas on chromosome 10, and frequent LOH on 10p was detected on 10p15, in agreement with deletion mapping studies on chromosome 10. We then constructed a bacterial artificial chromosome (BAC) clone contig covering the critical region, which spanned the interval between D10S249 and D10S533 on 10p15. The map contained 68 BAC clones connected by 74 sequenced tag sites (STSs) and covered approximately 2.7 Mb, with one gap. A total of 74 STSs, including 6 microsatellite markers, 29 expressed sequenced tags (ESTs), and 39 BAC end STSs, were physically arranged. Twenty-eight ESTs were mapped in the interval between D10S249 and D10S559 (approximately 1200 kb), and another EST was mapped in the interval between D10S559 and D10S533 (approximately 1300 kb). This sequence-ready BAC clone contig map will be a basic resource for high-quality sequencing and positional cloning of the putative tumor suppressor gene at 10p15 in glioma.  相似文献   

15.
p53 inducible cyclin dependent kinase inhibitor, p21/WAF1/CIP1(p21), played a pivotal role for G1 arrest when cells received genotoxic stimuli. p21 could be a putative tumor suppressor gene, since its dysfunction may lead to accumulation of genomic alteration. We investigated the p21 and p53 status using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and immunohistochemical analyses, in eight patients who had synchronous or metachronous urothelial tumors. Loss of heterozygosity (LOH) of p21 gene was detected in one coincidental tumor in one case. p21 positive cells were detected by immuno-histochemical staining in all tumors in one case, and in one coincidental tumor in two cases. Among p21 positive cells in these three cases, no p53 mutations were detected, whereas no p21 positive cells were detected in other cases with a p53 mutation. These findings suggested that in transitional cell carcinoma (TCC) p21 gene mutation is infrequent like the p53 gene mutation, but that LOH might be important in the inactivation of p21.  相似文献   

16.
To determine early somatic changes in high-grade serous ovarian cancer (HGSOC), we performed whole genome sequencing on a rare collection of 16 low stage HGSOCs. The majority showed extensive structural alterations (one had an ultramutated profile), exhibited high levels of p53 immunoreactivity, and harboured a TP53 mutation, deletion or inactivation. BRCA1 and BRCA2 mutations were observed in two tumors, with nine showing evidence of a homologous recombination (HR) defect. Combined Analysis with The Cancer Genome Atlas (TCGA) indicated that low and late stage HGSOCs have similar mutation and copy number profiles. We also found evidence that deleterious TP53 mutations are the earliest events, followed by deletions or loss of heterozygosity (LOH) of chromosomes carrying TP53, BRCA1 or BRCA2. Inactivation of HR appears to be an early event, as 62.5% of tumours showed a LOH pattern suggestive of HR defects. Three tumours with the highest ploidy had little genome-wide LOH, yet one of these had a homozygous somatic frame-shift BRCA2 mutation, suggesting that some carcinomas begin as tetraploid then descend into diploidy accompanied by genome-wide LOH. Lastly, we found evidence that structural variants (SV) cluster in HGSOC, but are absent in one ultramutated tumor, providing insights into the pathogenesis of low stage HGSOC.  相似文献   

17.
The p53 gene is located on the short arm of chromosome 17. It encodes a 53-kd nuclear protein (p53) found in scant amounts in normal tissue. Mutations of the p53 gene have been reported in different human tumours. In breast cancer, it has been noted that the overexpression of p53 protein in the nucleus is an indicator of poor prognosis, although there is a high degree of variability, which may be due to different immunohistochemical techniques, varying assessment of results and the type of monoclonal antibody used. This study is an immunohistochemical analysis of p53 expression in 192 cases of infiltrating ductal carcinoma of the breast, correlating it with clinicopathological factors and the clinical course of the disease. Of all the breast-cancer tissue analysed, stains for p53 antibody were found in 87 tumours (45.3%). The results of multivariate analysis show that the independent predictors related to recurrence are tumour size, lymph-node metastasis and p53, while those related to death are necrosis, lymph-node metastasis and p53. In summary, our series showed prognostic significance between the expression of p53 and shorter survival time and disease-free interval for all patients in general as well as those who presented lymph-node metastases at the time of diagnosis.  相似文献   

18.
We adopted an integrated analysis of gene copy number alterations (CNAs), copy number neutral loss of heterozygosity (CNN LOH), and microRNA (miRNA) profiling in 21 adult acute lymphoblastic leukemia (ALL) patients. This study revealed the most frequent CNAs to be at chromosomes 9p, 7, and 17 and recurrent CNN LOH at 5p, 9p, and Xq. As for the most differentially expressed miRNAs, they included 8 upregulated and 14 downregulated miRNAs, of which miR-148a at 7p15.2, miR-22 at 17p13.3, miR-223 at Xq12, as well as miR-101-2 at 9p24.1 exhibited recurrent CNAs or CNN LOH. miR-101-2 was recurrently downregulated, and although the related CNN LOH was detected only in BCR-ABL1 negative cases (2/14), deletions of miR-101-2 were observed solely in BCR-ABL1 positive cases (4/7). Finally, BCR-ABL1 positive cases, in contrast to negative ones, were characterized by slightly, but still significantly, higher expression levels of miR-29b.  相似文献   

19.
The structural complexity of chromosome 1p centromeric region has been an obstacle for fine mapping of tumor suppressor genes in this area. Loss of heterozygosity (LOH) on chromosome 1p is associated with the longer survival of oligodendroglioma (OD) patients. To test the clinical relevance of 1p loss in glioblastomas (GBM) patients and identifiy the underlying tumor suppressor locus, we constructed a somatic deletion map on chromosome 1p in 26 OG and 118 GBM. Deletion hotspots at 4 microsatellite markers located at 1p36.3, 1p36.1, 1p22 and 1p11 defined 10 distinct haplotypes that were related to patient survival. We found that loss of 1p centromeric marker D1S2696 within NOTCH2 intron 12 was associated with favorable prognosis in OD (P = 0.0007) as well as in GBM (P = 0.0175), while 19q loss, concomitant with 1p LOH in OD, had no influence on GBM survival (P = 0.918). Assessment of the intra-chromosomal ratio between NOTCH2 and its 1q21 pericentric duplication N2N (N2/N2N-test) allowed delineation of a consistent centromeric breakpoint in OD that also contained a minimally lost area in GBM. OD and GBM showed distinct deletion patterns that converged to the NOTCH2 gene in both glioma subtypes. Moreover, the N2/N2N-test disclosed homozygous deletions of NOTCH2 in primary OD. The N2/N2N test distinguished OD from GBM with a specificity of 100% and a sensitivity of 97%. Combined assessment of NOTCH2 genetic markers D1S2696 and N2/N2N predicted 24-month survival with an accuracy (0.925) that is equivalent to histological classification combined with the D1S2696 status (0.954) and higher than current genetic evaluation by 1p/19q LOH (0.762). Our data propose NOTCH2 as a powerful new molecular test to detect prognostically favorable gliomas.  相似文献   

20.
Malignant gliomas are the most frequent type of primary brain tumors. Patients' outcome has not improved despite new therapeutics, thus underscoring the need for a better understanding of their genetics and a fresh approach to treatment. The lack of reproducibility in the classification of many gliomas presents an opportunity where genomics may be paramount for accurate diagnosis and therefore best for therapeutic decisions. The aim of this work is to identify large and focal copy number abnormalities (CNA) and loss of heterozygosity (LOH) events in a malignant glioma population. We hypothesized that these explorations will allow discovery of genetic markers that may improve diagnosis and predict outcome. DNA from glioma specimens were subjected to CNA and LOH analyses. Our studies revealed more than 4000 CNA and several LOH loci. Losses of chromosomes 1p and/or 19q, 10, 13, 14, and 22 and gains of 7, 19, and 20 were found. Several of these alterations correlated significantly with histology and grade. Further, LOH was detected at numerous chromosomes. Interestingly, several of these loci harbor genes with potential or reported tumor suppressor properties. These novel genetic signatures may lead to critical insights into diagnosis, classification, prognosis, and design of individualized therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号