首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutational inactivation of the tumor suppressor tuberous sclerosis complex 2 (TSC2) constitutively activates mTORC1, increases cell proliferation, and induces the pathological manifestations observed in tuberous sclerosis (TS) and in pulmonary lymphangioleiomyomatosis (LAM). While the role of mTORC1 in TSC2-dependent growth has been extensively characterized, little is known about the role of mTORC2. Our data demonstrate that mTORC2 modulates TSC2-null cell proliferation and survival through RhoA GTPase and Bcl2 proteins. TSC2-null cell proliferation was inhibited not only by reexpression of TSC2 or small interfering RNA (siRNA)-induced downregulation of Rheb, mTOR, or raptor, but also by siRNA for rictor. Increased RhoA GTPase activity and P-Ser473 Akt were inhibited by siRNA for rictor. Importantly, constitutively active V14RhoA reversed growth inhibition induced by siRNA for rictor, siRNA TSC1, reexpression of TSC2, or simvastatin. While siRNA for RhoA had a modest effect on growth inhibition, downregulation of RhoA markedly increased TSC2-null cell apoptosis. Inhibition of RhoA activity downregulated antiapoptotic Bcl2 and upregulated proapoptotic Bim, Bok, and Puma. In vitro and in vivo, simvastatin alone or in combination with rapamycin inhibited cell growth and induced TSC2-null cell apoptosis, abrogated TSC2-null tumor growth, improved animal survival, and prevented tumor recurrence by inhibiting cell growth and promoting apoptosis. Our data demonstrate that mTORC2-dependent activation of RhoA is required for TSC2-null cell growth and survival and suggest that targeting both mTORC2 and mTORC1 by a combination of proapoptotic simvastatin and cytostatic rapamycin shows promise for combinational therapeutic intervention in diseases with TSC2 dysfunction.  相似文献   

2.
Qiu  Y.  Chen  W. Y.  Wang  Z. Y.  Liu  F.  Wei  M.  Ma  C.  Huang  Y. G. 《Neurochemical research》2016,41(9):2457-2469

Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity.

  相似文献   

3.
The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser(256)-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.  相似文献   

4.
Cell surface receptors for high-density lipoprotein (HDL) on hepatocytes are major partners in the regulation of cholesterol homeostasis. We have previously demonstrated on human hepatocytes that apolipoprotein A-I binding to an ectopic F(1)-ATPase stimulates the production of extracellular ADP that activates a P2Y(13)-mediated high-density lipoprotein (HDL) endocytosis pathway. However, P2Y(13)-dependent signalling pathway has never been described yet. The current study demonstrates a major role of cytoskeleton reorganization in F(1)-ATPase/P2Y(13)-dependent HDL endocytosis under the control of the small GTPase RhoA and its effector ROCK I. Indeed human hepatocytes (HepG(2) cells) stimulated by ADP or AR-C69931MX (both P2Y(13) agonists) showed a high specific activation of RhoA; in addition, inhibition of Rho proteins by C3 exoenzyme impairs HDL endocytosis whereas a constitutively active form of RhoA stimulates HDL endocytosis at the same level as under F(1)-ATPase/P2Y(13) activation. Pharmacological inhibition of ROCK activity decreased HDL endocytosis following stimulation by apoA-I (F(1)-ATPase ligand), ADP or AR-C69931MX and specific siRNA ROCK I extinction prevented the stimulation of HDL endocytosis without effect of ROCK II extinction. The functional involvement of ROCK I downstream F(1)-ATPase/P2Y(13) was confirmed by the strong enrichment of the membrane fraction in ROCK I and by the requirement of actin polymerization in hepatocyte HDL endocytosis. These results allow the identification of the molecular events downstream P2Y(13) receptor activation for a better understanding of hepatocyte HDL endocytosis, the latest step in reverse cholesterol transport.  相似文献   

5.
Ung CY  Li H  Ma XH  Jia J  Li BW  Low BC  Chen YZ 《FEBS letters》2008,582(15):2283-2290
Deregulations of EGFR endocytosis in EGFR-ERK signaling are known to cause cancers and developmental disorders. Mutations that impaired c-Cbl-EGFR association delay EGFR endocytosis and produce higher mitogenic signals in lung cancer. ROCK, an effector of small GTPase RhoA was shown to negatively regulate EGFR endocytosis via endophilin A1. A mathematical model was developed to study how RhoA and ROCK regulate EGFR endocytosis. Our study suggested that over-expressing RhoA as well as ROCK prolonged ERK activation partly by reducing EGFR endocytosis. Overall, our study hypothesized an alternative role of RhoA in tumorigenesis in addition to its regulation of cytoskeleton and cell motility.  相似文献   

6.
7.
We investigated the membrane trafficking of AQP3 induced by epinephrine in Caco-2 cells to clarify the digestive absorption of glycerol permeated by AQP3. Epinephrine was found to promote within 60 min the translocation of AQP3 from the cytoplasmic fraction to the plasma membrane. This increased trafficking of AQP3 was suppressed by phospholipase C and protein kinase C (PKC) inhibitors and a phorbol ester accelerated the trafficking of AQP3 to the membrane fraction. In contrast, adenylyl cyclase (AC) and protein kinase A (PKA) inhibitors did not have any effect on the increased in trafficking of AQP3 by epinephrine and an AC activator did not affect the trafficking of AQP3. Phosphorylation of a threonine (514) residue in PKC was detected upon the treatment with epinephrine and the temporal transitional pattern of this phosphorylation paralleled that of the increased trafficking of AQP3. These results suggest that PKC modulates the trafficking of AQP3.  相似文献   

8.
Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening.  相似文献   

9.
Kv1.2 is a member of the Shaker family of voltage-sensitive potassium channels and contributes to regulation of membrane excitability. The electrophysiological activity of Kv1.2 undergoes tyrosine kinase-dependent suppression in a process involving RhoA. We report that RhoA elicits suppression of Kv1.2 ionic current by modulating channel endocytosis. This occurs through two distinct pathways, one clathrin-dependent and the other cholesterol-dependent. Activation of Rho kinase (ROCK) via the lysophosphatidic acid (LPA) receptor elicits clathrin-dependent Kv1.2 endocytosis and consequent attenuation of its ionic current. LPA-induced channel endocytosis is blocked by the ROCK inhibitor Y27632 or by clathrin RNA interference. In contrast, steady-state endocytosis of Kv1.2 in unstimulated cells is cholesterol dependent. Inhibition of basal ROCK signaling with Y27632 increased surface Kv1.2, an effect that persists in the presence of clathrin small interfering RNA and that is not additive to the increase in surface channel levels elicited by the cholesterol sequestering drug filipin. Temperature block experiments show that ROCK affects cholesterol-dependent trafficking by modulating the recycling of endocytosed channel back to the plasma membrane. Both receptor-stimulated and steady-state Kv1.2 trafficking modulated by RhoA/ROCK required the activation of dynamin as well as the ROCK effector Lim-kinase, indicating a key role for actin remodeling in RhoA-dependent Kv1.2 regulation.  相似文献   

10.
The trafficking of aquaporin-2 (AQP2) involves multiple complex pathways, including regulated, cAMP-, and cGMP-mediated pathways, as well as a constitutive recycling pathway. Although several accessory proteins have been indirectly implicated in AQP2 recycling, the direct protein-protein interactions that regulate this process remain largely unknown. Using yeast two-hybrid screening of a human kidney cDNA library, we have identified the 70-kDa heat shock proteins as AQP2-interacting proteins. Interaction was confirmed by mass spectrometry of proteins pulled down from rat kidney papilla extract using a GST-AQP2 C-terminal fusion protein (GST-A2C) as a bait, by co-immunoprecipitation (IP) assays, and by direct binding assays using purified hsc70 and the GST-A2C. The direct interaction of AQP2 with hsc70 is partially inhibited by ATP, and the Ser-256 residue in the AQP2 C terminus is important for this direct interaction. Vasopressin stimulation in cells enhances the interaction of hsc70 with AQP2 in IP assays, and vasopressin stimulation in vivo induces an increased co-localization of hsc70 and AQP2 on the apical membrane of principal cells in rat kidney collecting ducts. Functional knockdown of hsc70 activity in AQP2 expressing cells results in membrane accumulation of AQP2 and reduced endocytosis of rhodamine-transferrin. Our data also show that AQP2 interacts with hsp70 in multiple in vitro binding assays. Finally, in addition to hsc70 and hsp70, AQP2 interacts with several other key components of the endocytotic machinery in co-IP assays, including clathrin, dynamin, and AP2. To summarize, we have identified the 70-kDa heat shock proteins as a AQP2 interactors and have shown for hsc70 that this interaction is involved in AQP2 trafficking.  相似文献   

11.
Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human cancers. However, the biological significance of GOLPH3 in glioma progression remains largely unknown. In this study, we report, for the first time, that downregulation of GOLPH3 led to clear reductions in glioma cell migration and invasion. In addition, downregulation of GOLPH3 inhibited the expression of the small GTPase RhoA as well as cytoskeletal reorganization, which are both required for glioma cell migration. Furthermore, we found that the observed reductions in glioma cell migration and RhoA level could be rescued by RhoA overexpression. Taken together, these results show that GOLPH3 contributes to the motility of glioma cells by regulating the expression of RhoA.  相似文献   

12.
BACKGROUND INFORMATION: Phenotype analysis has demonstrated that AQP3 (aquaporin 3) null mice are polyuric and manifest a urinary concentration defect. In the present study, we report that deletion of AQP3 is also associated with an increased urinary sodium excretion. To investigate further the mechanism of the decreased urinary concentration and significant natriuresis, we examined the segmental and subcellular localization of collecting duct AQPs [AQP2, p-AQP2 (phosphorylated AQP2), AQP3 and AQP4], ENaC (epithelial sodium channel) subunits and Na,K-ATPase by immunoperoxidase and immunofluorescence microscopy in AQP3 null (-/-), heterozygous (+/-) mice, wild-type and unrelated strain of normal mice. RESULTS: The present study confirms that AQP3 null mice exhibit severe polyuria and polydipsia and demonstrated that they exhibit increased urinary sodium excretion. In AQP3 null mice, there is a marked down-regulation of AQP2 and p-AQP2 both in CNT (connecting tubule) and CCD (cortical collecting duct). Moreover, AQP4 is virtually absent from CNT and CCD in AQP3 null mice. Basolateral AQP2 was virtually absent from AQP3 null mice and normal mice in contrast with rat. Thus the above results demonstrate that no basolateral AQPs are expressed in CNT and CCD of AQP3 null mice. However, in the medullary-collecting ducts, there is no difference in the expression levels and subcellular localization of AQP2, p-AQP2 and AQP4 between AQP3 +/- and AQP3 null mice. Moreover, a striking decrease in the immunolabelling of the alpha1 subunit of Na,K-ATPase was observed in CCD in AQP3 null mice, whereas a medullary-collecting duct exhibited normal labelling. Immunolabelling of all the ENaC subunits in the collecting duct was comparable between the two groups. CONCLUSIONS: The results improve the possibility that the severe urinary concentrating defect in AQP3 null mice may in part be caused by the decreased expression of AQP2, p-AQP2 and AQP4 in CNT and CCD, whereas the increased urinary sodium excretion may in part be accounted for by Na,K-ATPase in CCD in AQP3 null mice.  相似文献   

13.
The members of the protein kinase D (PKD) family of serine/threonine kinases are major targets for tumor-promoting phorbol esters, G protein-coupled receptors, and activated protein kinase C isoforms (PKCs). The expanding list of cellular processes in which PKDs exert their function via phosphorylation of various substrates include proliferation, apoptosis, migration, angiogenesis, and vesicle trafficking. Therefore, identification of novel PKD substrates is necessary to understand the profound role of this kinase family in signal transduction. Here, we show that rhotekin, an effector of RhoA GTPase, is a novel substrate of PKD. We identified Ser-435 in rhotekin as the potential site targeted by PKD in vivo. Expression of a phosphomimetic S435E rhotekin mutant resulted in an increase of endogenous active RhoA GTPase levels. Phosphorylation of rhotekin by PKD2 modulates the anchoring of the RhoA in the plasma membrane. Consequently, the S435E rhotekin mutant displayed enhanced stress fiber formation when expressed in serum-starved fibroblasts. Our data thus identify a novel role of PKD as a regulator of RhoA activity and actin stress fiber formation through phosphorylation of rhotekin.  相似文献   

14.
BACKGROUND INFORMATION: Aquaporin 2 (AQP2) plays an important, VP (vasopressin)-regulated role in water reabsorption by the kidney. The amount of AQP2 expressed at the surface of principal cells results from an equilibrium between the AQP2 in intracellular vesicles and the AQP2 on the plasma membrane. VP shifts the equilibrium in favour of the plasma membrane and this allows osmotic equilibration to occur between the collecting duct lumen and the interstitial space. Membrane accumulation of AQP2 could result from a VP-induced increase in exocytosis, a decrease in endocytosis, or both. In the present study, we further investigated AQP2 accumulation at the cell surface, and compared it with V2R (VP type 2 receptor) trafficking using cells that express epitope-tagged AQP2 and V2R. RESULTS: Endocytosis of V2R and of AQP2 are independent events that can be separated temporally and spatially. The burst of endocytosis seen after VP addition to target cells, when AQP2 accumulates at the cell surface, is primarily due to internalization of the V2R. Increased endocytosis is not induced by forskolin, which also induces membrane accumulation of AQP2 by direct stimulation of adenylate cyclase. This indicates that cAMP elevation is not the primary cause of the initial, VP-induced endocytic process. After VP exposure, AQP2 is not located in endosomes with internalized V2R. Instead, it remains at the cell surface in 'endocytosis-resistant' membrane domains, visualized by confocal imaging. After VP washout, AQP2 is progressively internalized with the fluid-phase marker FITC-dextran, indicating that VP washout releases an endocytotic block that maintains AQP2 at the cell surface. Finally, polarized application of VP to filter-grown cells shows that apical VP can induce basolateral endocytosis and V2R down-regulation, and vice versa. CONCLUSIONS: After VP stimulation of renal epithelial cells, AQP2 accumulates at the cell surface, while the V2R is actively internalized. This endocytotic block may involve a reduced capacity of phosphorylated AQP2 to interact with components of the endocytotic machinery. In addition, a complex cross-talk exists between the apical and basolateral plasma-membrane domains with respect to endocytosis and V2R down-regulation. This may be of physiological significance in down-regulating the VP response in the kidney in vivo.  相似文献   

15.
《The Journal of cell biology》1995,130(6):1319-1332
To study an endocytotic role of the GTP-binding protein RhoA in Xenopus oocytes, we have monitored changes in the surface expression of sodium pumps, the surface area of the oocyte and the uptake of the fluid-phase marker inulin. Xenopus oocytes possess intracellular sodium pumps that are continuously exchanged for surface sodium pumps by constitutive endo- and exocytosis. Injection of Clostridium botulinum C3 exoenzyme, which inactivates Rho by ADP-ribosylation, induced a redistribution of virtually all intracellular sodium pumps to the plasma membrane and increased the surface area of the oocytes. The identical effects were caused by injection of ADP-ribosylated recombinant RhoA into oocytes. The C3 exoenzyme acts by blocking constitutive endocytosis in oocytes, as determined using a mAb to the beta 1 subunit of the mouse sodium pump as a reporter molecule and oocytes expressing heterologous sodium pumps. In contrast, an increase in endocytosis and a decrease in the surface area was induced by injection of recombinant Val14-RhoA protein or Val14-rhoA cRNA. PMA stimulated sodium pump endocytosis, an effect that was blocked by a specific inhibitor of protein kinase C (Go 16) or by ADP-ribosylation of Rho by C3. Similarly, the phorbol ester-induced increase in fluid-phase endocytosis in oocytes was inhibited by Go 16, C3 transferase, or by injection of ADP-ribosylated RhoA. In contrast to C3 transferase, C. botulinum C2 transferase, which ADP-ribosylates actin, had no effect on sodium pump endocytosis or PMA-stimulated fluid- phase endocytosis. The data suggests that RhoA is an essential component of a presumably clathrin-independent endocytic pathway in Xenopus oocytes which can be regulated by protein kinase C.  相似文献   

16.

Amphetamines and amphetamine-derivatives elevate neurotransmitter concentrations by competing with endogenous biogenic amines for reuptake. In addition, AMPHs have been shown to activate endocytosis of the dopamine transporter (DAT) which further elevates extracellular dopamine (DA). We previously found that the biochemical cascade leading to this cellular process involves entry of AMPH into the cell through the DAT, stimulation of an intracellular trace amine-associated receptor, TAAR1, and activation of the small GTPase, RhoA. We also showed that the neuronal glutamate transporter, EAAT3, undergoes endocytosis via the same cascade in DA neurons, leading to potentiation of glutamatergic inputs. Since AMPH is a transported inhibitor of both DAT and the norepinephrine transporter (NET), and EAAT3 is also expressed in norepinephrine (NE) neurons, we explored the possibility that this signaling cascade occurs in NE neurons. We found that AMPH can cause endocytosis of NET as well as EAAT3 in NE neurons. NET endocytosis is dependent on TAAR1, RhoA, intracellular calcium and CaMKII activation, similar to DAT. However, EAAT3 endocytosis is similar in all regards except its dependence upon CaMKII activation. RhoA activation is dependent on calcium, but not CaMKII, explaining a divergence in AMPH-mediated endocytosis of DAT and NET from that of EAAT3. These data indicate that AMPHs and other TAAR1 agonists can affect glutamate signaling through internalization of EAAT3 in NE as well as DA neurons.

  相似文献   

17.
We have used affinity chromatography to identify two proteins that bind to the SH3 domain of the actin cytoskeleton protein Rvs167p: Gyp5p and Gyl1p. Gyp5p has been shown to be a GTPase activating protein (GAP) for Ypt1p, a Rab GTPase involved in ER to Golgi trafficking; Gyl1p is a protein that resembles Gyp5p and has recently been shown to colocalize with and belong to the same protein complex as Gyp5p. We show that Gyl1p and Gyp5p interact directly with each other, likely through their carboxy-terminal coiled-coil regions. In assays of GAP activity, Gyp5p had GAP activity toward Ypt1p and we found that this activity was stimulated by the addition of Gyl1p. Gyl1p had no GAP activity toward Ypt1p. Genetic experiments suggest a role for Gyp5p and Gyl1p in ER to Golgi trafficking, consistent with their biochemical role. Since Rvs167p has a previously characterized role in endocytosis and we have shown here that it interacts with proteins involved in Golgi vesicle trafficking, we suggest that Rvs167p may have a general role in vesicle trafficking.  相似文献   

18.
Epithelial renal collecting duct cells express multiple types of aquaporin (AQP) water channels in a polarized fashion. AQP2 is specifically targeted to the apical cell domain, whereas AQP3 and AQP4 are expressed on the basolateral membrane. It is crucial that these AQP variants are sorted to their proper polarized membrane domains, because correct AQP sorting enables efficient water transport. However, the molecular mechanisms involved in the polarized targeting and membrane trafficking of AQPs remain largely unknown. In the present study, we have examined the polarized trafficking and surface expression of AQP3 in Madin-Darby canine kidney type II (MDCKII) cells in an effort to identify the molecular determinants of polarized targeting specificity. When expressed in MDCKII cells, the majority of the exogenous wild-type AQP3 was found to be targeted to the basolateral membrane, consistent with its localization pattern in vivo. A potential sorting signal consisting of tyrosine- and dileucine-based motifs was subsequently identified in the AQP3 NH2 terminus. When mutations were introduced into this signaling region, the basolateral targeting of the resulting mutant AQP3 was disrupted and the mutant protein remained in the cytoplasm. AQP2-AQP3 chimeras were then generated in which the entire NH2 terminus of AQP2 was replaced with the AQP3 NH2 terminus. This chimeric protein was observed to be mislocalized constitutively in the basolateral membrane, and mutations in the AQP3 NH2-terminal sorting signal abolished this effect. On the basis of these results, we conclude that an NH2-terminal sorting signal mediates the basolateral targeting of AQP3. epithelial cells; protein sorting; Madin-Darby canine kidney cells; basolateral  相似文献   

19.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

20.
Acidic extracellular pH (pHe) is a common feature of the tumor microenvironment and has been implicated in tumor invasion through the induction of protease secretion. Since lysosomes constitute the major storehouse of cellular proteases, the trafficking of lysosomes to the cell periphery may be required in order to secrete proteases. We demonstrate that a pHe of 6.4-6.8 induced the trafficking of lysosomes to membrane protrusions in the cell periphery. This trafficking event depended upon the PI3K pathway, the GTPase RhoA and sodium-proton exchange activity, resulting in lysosomal exocytosis. Acidic pHe induced a cytoplasmic acidification (although cytoplasmic acidification was not sufficient for acidic pHe-induced lysosome trafficking and exocytosis) and inhibition of NHE activity with the amiloride derivative, EIPA or the anti-diabetic agent troglitazone prevented lysosome trafficking to the cell periphery. Interestingly, using the more specific NHE1 and NHE3 inhibitors, cariporide and s3226 respectively, we show that multiple NHE isoforms are involved in acidic pHe-induced lysosome trafficking and exocytosis. Moreover, in cells expressing NHE1 shRNA, although basal NHE activity was decreased, lysosomes still underwent acidic pHe-induced trafficking, suggesting compensation by other NHE family members. Together these data implicate proton exchangers, especially NHE1 and NHE3, in acidic pHe-induced lysosome trafficking and exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号