首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil bacteria may have properties of plant growth promotion but not be sufficiently beneficial for plants under stress conditions. This challenge has led researchers to extend their searches into extreme environments for potential soil bacteria with multiple plant beneficial traits as well as abiotic stress tolerance abilities. In the current study, an attempt was made to evaluate soil bacteria from an extreme environment, volcano soils, based on plant growth promoting and abiotic stress mitigating characteristics. The screening led to the isolation of eight (NBRISH4, NBRISH6, NBRISH10, NBRISH11, NBRISH13, NBRISH14, NBRISH16 and NBRISH26) bacterial isolates capable of withstanding stresses, namely temperature (up to 45 °C), salt (up to 2 M NaCl) and drought (up to 60% Poly Ethylene Glycol 6000) in vitro. Further, the selected isolates were notable for their in vitro temporal performance with regards to survival (in terms of colony count), phosphate solubilisation, biofilm formation, auxin, alginate and exo-polysaccharide production abilities under abiotic stresses i.e. 40 °C temperature; 500 mM NaCl salt and drought (PEG) conditions. In vivo seed treatments of individual selected bacteria to maize plants resulted into significant enhancement in root and shoot length, root and shoot fresh and dry weight and number of leaves per plant. Overall, the plant growth promoting and abiotic stress tolerance ability was most evident for bacterial isolate NBRISH6 which was identified as an Ochrobactrum sp. using 16S rRNA based phylogenetic analysis.  相似文献   

2.
Environmental constraints that include abiotic stress factors such as salt, drought, cold and extreme temperatures severely limit crop productivity. Improvement of crop plants with traits that confer tolerance to these stresses was practiced using traditional and modern breeding methods. Molecular breeding and genetic engineering contributed substantially to our understanding of the complexity of stress response. Mechanisms that operate signal perception, transduction and downstream regulatory factors are now being examined and an understanding of cellular pathways involved in abiotic stress responses provide valuable information on such responses. This review presents genomic-assisted methods which have helped to reveal complex regulatory networks controlling abiotic stress tolerance mechanisms by high-throughput expression profiling and gene inactivation techniques. Further, an account of stress-inducible regulatory genes which have been transferred into crop plants to enhance stress tolerance is discussed as possible modes of integrating information gained from functional genomics into knowledge-based breeding programs. In addition, we envision an integrative genomic and breeding approach to reveal developmental programs that enhance yield stability and improve grain quality under unfavorable environmental conditions of abiotic stresses.  相似文献   

3.
Drought and heat stress are two major abiotic stresses that tend to co‐occur in nature. Recent climate change models predict that the frequency and duration of periods of high temperatures and moisture‐deficits are on the rise and can be detrimental to crop production and hence a serious threat for global food security. In this study we examined the impact of short‐term heat, drought and combined heat and drought stress on four barley varieties. These stresses were applied during vegetative stage or during heading stages. The impact on root and shoot biomass as well as seed yields were analyzed. This study demonstrated that sensitivity to combined stress was generally greater than heat or drought individually, and greater when imposed at heading than at the vegetative stages. Micromalted seeds collected from plants stressed during heading showed differences in malt extract, beta‐glucan content and percent soluble protein. Screening barley germplasm during heading stage is recommended to identify novel sources of tolerance to combined stress. Apart from seed yield, assessing the seed quality traits of concern for the stakeholders and/or consumers should be an integral part of breeding programs for developing new barley varieties with improved heat and drought stress tolerance.  相似文献   

4.
Effects of soil drought or waterlogging on the morphological traits of the root system and internal root anatomy were studied in maize hybrids of different drought tolerance. The investigations comprised quantitative and qualitative analyses of a developed plant root system through determining the number, length and dry matter of the particular components of the root system and some traits of the anatomical structure of the seminal root. Obtained results have demonstrated a relatively broad variation in the habit of the root system. This mainly refers, to the number, length and dry matter of lateral roots, developed by seminal root, seminal adventitious and nodal roots as well as to some anatomical properties of the stele, cortex and metaxylem elements. Plants grown under waterlogging or drought conditions showed a smaller number and less dry matter of lateral branching than plants grown in control conditions. The harmful effect of waterlogging conditions on the growth of roots was greater when compared with that of plants exposed to drought. In the measurements of the root morphological traits, the effect of soil drought on the internal root anatomical characteristic was weaker than the effect of soil waterlogging. The observed effects of both treatments were more distinct in a drought sensitive hybrid Pioneer D than in drought resistant Pioneer C one. The drought resistant hybrid Pioneer C distinguished by a more extensive rooting and by smaller alterations in the root morphology caused by the stress conditions than drought sensitive hybrid Pioneer D one. Also the differences between the resistant and the sensitive maize hybrids were apparent for examined root anatomical traits. Results confirm that the hybrid Pioneer D of a high drought susceptibility was found to be also more sensitive to periodieal soil water excess. A more efficient water use and a lower shoot to root (S:R) ratio were found to be major reasons for a higher stress resistance of the hybrid Pioneer C. The reasons for a different response of the examined hybrids to the conditions of drought or waterlogging may be a more economical water balance and more favourable relations between the shoot and root dimensions in the drought resistant genotype. The observed modifications of the internal root structure caused by water deficit in plant tissues may partly influence on water conductivity and transport within roots. The results suggest that the morphological and anatomical traits of the maize root system may be used in practice as direct or indirect selection criteria in maize breeding.  相似文献   

5.
Breeding for abiotic stresses for sustainable agriculture   总被引:1,自引:0,他引:1  
Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.  相似文献   

6.
The availability of diversified germplasm resources is the most important for developing improved rice varieties with higher seed yield or tolerance to various biotic or abiotic stresses. Here we report an efficient tool to create increased variations in rice by maize Ac/Ds transposon (a gene trap system) insertion mutagenesis. We have generated around 20,000 Ds insertion rice lines of which majority are homozygous for Ds element. We subjected these lines to phenotypic and abiotic stress screens and evaluated these lines with respect to their seed yields and other agronomic traits as well as their tolerance to drought, salinity and cold. Based on this evaluation, we observed that random Ds insertions into rice genome have led to diverse variations including a range of morphological and conditional phenotypes. Such differences in phenotype among these lines were accompanied by differential gene expression revealed by GUS histochemical staining of gene trapped lines. Among the various phenotypes identified, some Ds lines showed significantly higher grain yield compared to wild-type plants under normal growth conditions indicating that rice could be improved in grain yield by disrupting certain endogenous genes. In addition, several 1,000s of Ds lines were subjected to abiotic stresses to identify conditional mutants. Subsequent to these screens, over 800 lines responsive to drought, salinity or cold stress were obtained, suggesting that rice has the genetic potential to survive under abiotic stresses when appropriate endogenous genes were suppressed. The mutant lines that have higher seed yielding potential or display higher tolerance to abiotic stresses may be used for rice breeding by conventional backcrossing combining with molecular marker-assisted selection. In addition, by exploiting the behavior of Ds to leave footprints upon remobilization, we have shown an alternative strategy to develop new rice varieties without foreign DNA sequences in their genome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Drought is considered one of the leading abiotic constraints to agricultural crop production globally. Present study was conducted to assess the effects of different drought treatments (viz. Control, 10% PEG, and 20% PEG) on seed germination, germination indices, seedling traits, and drought tolerance indices of sesame. Our results showed that maximum reduction in the studied parameters was observed at higher PEG concentration (i.e., 20% PEG). As compared to control, the drought treatments viz. 10% and 20% PEG decreased the values for germination indices, such as germination percentage, coefficient of variation of germination time, germination index, and seedling vigor index. Similarly, for seedling traits, the values were decreased for root length, shoot length, root shoot ratio, root fresh weight, shoot fresh weight, root dry weight and shoot dry weight under 10% and 20% PEG treatments significantly in comparison with control. Furthermore, relative to control, the values for drought tolerance indices, such as germination drought tolerance index, root length drought tolerance index, shoot length drought tolerance index, total seedling length drought tolerance index, root fresh weight drought tolerance index, shoot fresh weight drought tolerance index, total fresh weight drought tolerance index, root dry weight drought tolerance index, shoot dry weight drought tolerance index and total dry weight drought tolerance index were also reduced under 10% and 20% PEG treatments, respectively. Our results confirms that drought impact on seed germination and seedling traits could be quantified by using different indices which can further help to design drought adaptation and mitigation strategies. Based on these results it can be concluded that germination indices, seedling traits, and drought tolerance indices have great potential to simulate drought stress impacts on different crop traits thus they should be used in all kinds of stress related studies.  相似文献   

8.
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.  相似文献   

9.
10.
This article represents some current thinking and objectives in the use of molecular markers to abiotic stress tolerance. Barley has been chosen for study as it is an important crop species, as well as a model for genetic and physiological studies. It is an important crop and, because of its well-studied genetics and physiology, is an excellent candidate in which to devise more efficient breeding methods. Abiotic stress work on cultivated gene pools of small grain cereals frequently shows that adaptive and developmental genes are strongly associated with responses. Developmental genes have strong pleiotropic effects on a number of performance traits, not just abiotic stresses. One concern is that much of the genetic variation for improving abiotic stress tolerance has been lost during domestication, selection and modern breeding, leaving pleiotropic effects of the selected genes for development and adaptation. Such genes are critical in matching cultivars to their target agronomic environment, and since there is little leverage in changing these, other sources of variation may be required. In barley, and many other crops, greater variation to abiotic stresses exists in primitive landraces and related wild species gene pools. Wild barley, Hordeum spontaneum C. Koch is the progenitor of cultivated barley, Hordeum vulgare L. and is easily hybridized to H. vulgare. Genetic fingerprinting of H. spontaneum has revealed genetic marker associations with site-of-origin ecogeographic factors and also experimentally imposed stresses. Genotypes and collection sites have been identified which show the desired variation for particular stresses. Doubled haploid and other segregating populations, including landrace derivatives have been used to map genetically the loci involved. These data can be used in molecular breeding approaches to improve the drought tolerance of barley. One strategy involves screening for genetic markers and physiological traits for drought tolerance, and the associated problem of drought relief-induced mildew susceptibility in naturally droughted fields of North Africa.  相似文献   

11.
王雷  种康 《植物学报》2022,57(5):555-558
作物育种的目标是找到产量和抗性的最佳平衡点, 其中涉及“鱼和熊掌”二者兼得的选择策略。哪些逆境负调控位点影响产量性状, 以及如何调控等是突破育种瓶颈的重要科学问题。近百年来, 高产玉米(Zea mays)育种使玉米单产不断提高, 同时现代玉米品种对干旱的敏感性也呈现出增强趋势, 故而存在高产稳产的潜在风险。可对于这一现象背后确切的遗传机制却知之甚少, 从而限制了既高产又高抗玉米新品种的培育。玉米的非生物胁迫抗性与产量性状均为多基因控制的复杂数量性状, 涉及全基因组范围内大量基因的表达与调控。玉米基因组内存在大量的小RNA (sRNA), 其对基因表达起精细调控作用, 但人们对sRNA调控作物环境胁迫应答与产量性状机制的理解仍然有限。近日, 华中农业大学代明球课题组与李林和李峰两个课题组合作, 基于对338份玉米关联群体在不同环境下的sRNA表达组分析, 鉴定到大量干旱应答的sRNA, 以及调控这些sRNA表达的遗传位点(eQTL); 并克隆了8号染色体上1个干旱特异性eQTL热点DRESH8。生物信息学分析显示, DRESH8是1个由转座子组成的长度约为21.4 kb的反向重复序列(TE-IR)。DRESH8通过产生小干扰RNA (siRNA)介导抗旱基因的转录后沉默, 并间接抑制产量负调控因子的表达, 在负调控干旱应答的同时正调控产量性状。进一步研究发现, DRESH8在玉米驯化和改良过程中受到了人工选择。据此, 他们认为DRESH8可能是玉米平衡抗旱性和产量的关键遗传位点。该研究在全基因组水平上揭示了作物调控产量和环境胁迫抗性平衡的关键遗传机制, 同时也鉴定到大量IR位点, 为未来“高抗、高产”玉米设计育种提供了有价值的操控靶点。  相似文献   

12.
In nature, crops encounter a combination of abiotic stresses that severely limit yield. Our aim was to dynamically expose the changes of tomatoes' physiological parameters to drought, heat and their combination and thereby clarify the relationship between the responses to single and combined stress. We studied the effect of single and combined drought and heat stresses on the shoot and root of two tomato cultivars (Sufen No.14 as CV1; Jinlingmeiyu as CV2). After being exposed to combined stress for 6 days, the dry weight of shoot and root significantly decreased. The Fq′/Fm′ (quantum yield of photosystem II) was significantly lower in CV1 upon drought and combined stress and in CV2 subjected to combined stress (between days 4 and 6) compared to control. The relative water content during combined stress was significantly lower than control from day 4 to recovery day 2. On days 3 and 6, the water loss rate significantly increased under heat stress and decreased at drought and combined stress, respectively. The combined stress caused severe damages on photosystem II and chloroplast ultrastructure. The root activity after stress recovered even though drought significantly increased the activity from day 2 to day 6. Combined stress result in complex responses during tomato growth. The CV1 was more heat tolerant than CV2, but there was no varietal difference at drought and combined stress. This study contributes to the understanding of the underlying physiological response mechanism of plant to combined stress and crop improvement by providing valuable information for abiotic stress‐tolerant tomato breeding.  相似文献   

13.
Leaf temperature has been shown to vary when plants are subjected to water stress conditions. Recent advances in infrared thermography have increased the probability of recording drought tolerant responses more accurately. The aims of this study were to identify the effects of drought on leaf temperature using infrared thermography. Furthermore, the genomic regions responsible for the expression of leaf temperature variation in maize seedlings (Zea mays L.) were explored. The maize inbred lines Zong3 and 87-1 were evaluated using infrared thermography and exhibited notable differences in leaf temperature response to water stress. Correlation analysis indicated that leaf temperature response to water stress played an integral role in maize biomass accumulation. Additionally, a mapping population of 187 recombinant inbred lines (RILs) derived from a cross between Zong3 and 87-1 was constructed to identify quantitative trait loci (QTL) responsible for physiological traits associated with seedling water stress. Leaf temperature differences (LTD) and the drought tolerance index (DTI) of shoot fresh weight (SFW) and shoot dry weight (SDW) were the traits evaluated for QTL analysis in maize seedlings. A total of nine QTL were detected by composite interval mapping (CIM) for the three traits (LTD, RSFW and RSDW). Two co-locations responsible for both RSFW and RSDW were detected on chromosomes 1 and 2, respectively, which showed common signs with their trait correlations. Another co-location was detected on chromosome 9 between LTD and shoot biomass, which provided genetic evidence that leaf temperature affects biomass accumulation. Additionally, the utility of a thermography system for drought tolerance breeding in maize was discussed.  相似文献   

14.
Undoubtedly, drought is one of the prime abiotic stresses in the world. Crop yield losses due to drought stress are considerable. Although a variety of approaches have been used to alleviate the problem of drought, plant breeding, either conventional breeding or genetic engineering, seems to be an efficient and economic means of tailoring crops to enable them to grow successfully in drought-prone environments. During the last century, although plant breeders have made ample progress through conventional breeding in developing drought tolerant lines/cultivars of some selected crops, the approach is, in fact, highly time-consuming and labor- and cost-intensive. Alternatively, marker-assisted breeding (MAB) is a more efficient approach, which identifies the usefulness of thousands of genomic regions of a crop under stress conditions, which was, in reality, previously not possible. Quantitative trait loci (QTL) for drought tolerance have been identified for a variety of traits in different crops. With the development of comprehensive molecular linkage maps, marker-assisted selection procedures have led to pyramiding desirable traits to achieve improvements in crop drought tolerance. However, the accuracy and preciseness in QTL identification are problematic. Furthermore, significant genetic × environment interaction, large number of genes encoding yield, and use of wrong mapping populations, have all harmed programs involved in mapping of QTL for high growth and yield under water limited conditions. Under such circumstances, a transgenic approach to the problem seems more convincing and practicable, and it is being pursued vigorously to improve qualitative and quantitative traits including tolerance to biotic and abiotic stresses in different crops. Rapid advance in knowledge on genomics and proteomics will certainly be beneficial to fine-tune the molecular breeding and transformation approaches so as to achieve a significant progress in crop improvement in future. Knowledge of gene regulation and signal transduction to generate drought tolerant crop cultivars/lines has been discussed in the present review. In addition, the advantages and disadvantages as well as future prospects of each breeding approach have also been discussed.  相似文献   

15.
High yield and wide adaptation are principal targets of wheat breeding but are hindered by limited knowledge on genetic basis of agronomic traits and abiotic stress tolerances. In this study, 277 wheat accessions were phenotyped across 30 environments with non‐stress, drought‐stressed, heat‐stressed, and drought‐heat‐stressed treatments and were subjected to genome‐wide association study using 395 681 single nucleotide polymorphisms. We detected 295 associated loci including consistent loci for agronomic traits across different treatments and eurytopic loci for multiple abiotic stress tolerances. A total of 22 loci overlapped with quantitative trait loci identified by biparental quantitative trait loci mapping. Six loci were simultaneously associated with agronomic traits and abiotic stress tolerance, four of which fell within selective sweep regions. Selection in Chinese wheat has increased the frequency of superior marker alleles controlling yield‐related traits in the four loci during past decades, which conversely diminished favourable genetic variation controlling abiotic stress tolerance in the same loci; two promising candidate paralogous genes colocalized with such loci, thereby providing potential targets for studying the molecular mechanism of stress tolerance–productivity trade‐off. These results uncovering promising alleles controlling agronomic traits and/or multiple abiotic stress tolerances, providing insights into heritable covariation between yield and abiotic stress tolerance, will accelerate future efforts for wheat improvement.  相似文献   

16.
17.
18.
19.
植物抗旱和耐重金属基因工程研究进展   总被引:3,自引:0,他引:3  
干旱和重金属污染严重影响植物的生长发育.植物耐逆相关基因的克隆和功能鉴定研究,为通过基因工程途径提高植物的抗逆性奠定了理论基础.水分亏缺、高盐、低温和重金属胁迫都能诱导LEA(late embryogenesis abundant protein)基因的表达.转基因研究表明,LEA蛋白具有抗旱保护作用、离子结合特性以及抗氧化活性;水孔蛋白存在于细胞膜和液泡膜上,在细胞乃至整个植物体水分吸收和运输过程中发挥重要作用.干旱和盐胁迫促进水孔蛋白基因转录物的积累.过量表达水孔蛋白可增强水分吸收和运输,提高植物的抗旱能力.金属转运蛋白参与重金属离子的吸收、运输和累积等过程.这些蛋白基因在改良草坪草植物的抗旱节水和耐重金属能力等方面具有潜在的应用价值.  相似文献   

20.
Turgrfass used on landscapes, parks, sports fields, and golf courses has significant ecological, environmental, and economic impacts. The economic value of seed production of turfgrasses is second to hybrid corn. The land area cultivated with turfgrass is increasing due to rapid urban development. Turfgrass is often subjected to various abiotic stresses, which cause declines in aesthetic quality, functionality and seed yield. Among abiotic stresses, drought, salinity, heat, and low temperature are the most common detrimental factors for turfgrass growth in various regions. Thorough understanding of mechanisms of turfgrass stress responses is vital for the development of superior stress-tolerant germplasm through breeding and biotechnology. Significant progress has been made in turfgrass stress physiology and molecular biology in recent decades, but research for turfgrasses generally lags behind that of the major Poaceae crops, particularly at the molecular and genomic levels. This review focuses on research advances in turfgrass stress physiology and provides an overview of limited information on gene discovery, genetic transformation, and molecular marker development for improving stress tolerance, with emphasis on drought, salinity, heat, and low temperature stress. Major growth and physiological traits associated with these stresses, as well as metabolic and molecular factors regulating various traits for turfgrass tolerance to each stress are discussed. Future research at the systems biology level and through genomic sequencing is paramount for further insights on fundamental mechanisms of turfgrass stress tolerance and for improving turfgrass tolerance to various environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号