首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吕权真  张景翔  姜远英  王彦 《菌物学报》2020,39(11):2149-2160
白念珠菌是临床最常见的致病真菌,共有约6 100个基因,阐明其基因功能,尤其是致病性和耐药性相关基因的功能对发现抗真菌的新策略和新靶点有举足轻重的意义。白念珠菌基因功能研究的策略主要包括基因敲除和基因表达调控,近年来,白念珠菌基因功能研究的技术手段不断发展,本文就常用技术的发展进行综述,对相关技术存在的不足和发展前景也进行了分析。  相似文献   

2.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by active drug efflux out of the cells. In clinical C. albicans strains, fluconazole resistance frequently correlates with constitutive activation of the MDR1 gene, encoding a membrane transport protein of the major facilitator superfamily that is not expressed detectably in fluconazole-susceptible isolates. However, the molecular changes causing MDR1 activation have not yet been elucidated, and direct proof for MDR1 expression being the cause of drug resistance in clinical C. albicans strains is lacking as a result of difficulties in the genetic manipulation of C. albicans wild-type strains. We have developed a new strategy for sequential gene disruption in C. albicans wild-type strains that is based on the repeated use of a dominant selection marker conferring resistance against mycophenolic acid upon transformants and its subsequent excision from the genome by FLP-mediated, site-specific recombination (MPAR-flipping). This mutagenesis strategy was used to generate homozygous mdr1/mdr1 mutants from two fluconazole-resistant clinical C. albicans isolates in which drug resistance correlated with stable, constitutive MDR1 activation. In both cases, disruption of the MDR1 gene resulted in enhanced susceptibility of the mutants against fluconazole, providing the first direct genetic proof that MDR1 mediates fluconazole resistance in clinical C. albicans strains. The new gene disruption strategy allows the generation of specific knock-out mutations in any C. albicans wild-type strain and therefore opens completely novel approaches for studying this most important human pathogenic fungus at the molecular level.  相似文献   

3.
The alarming incidence of invasive candidiasis, predominantly among the recent expanding immunocompromised population, the appearance of antifungal-drug resistance, and the lack of specific diagnostic tests for it have demanded more impactful research into Candida albicans pathogenicity. Proteomic approaches can provide accurate clues about its biological complexity. Indeed, initial C. albicans proteome analyses have focused on the understanding of dimorphism, host responses, the cell wall, virulence factors and drug resistance, among others. This review aims to briefly outline the technology available for proteomics-based studies, surveying the main proteomic approaches applied to C. albicans research. Prefractionation techniques, two-dimensional gel electrophoresis and mass spectrometry continue to be the backbone of proteomic projects. Emerging strategies for protein separation, quantification and identification may, however, challenge the pivotal position of 2D-PAGE. Regardless of this, since we are now approaching the completion and annotation of C. albicans genome sequencing, systematic characterization of the proteome of this fungal pathogen, although still in its early stages, heralds an exciting expansion of our knowledge in years to come.  相似文献   

4.
The genetic basis of fluconazole resistance development in Candida albicans   总被引:13,自引:0,他引:13  
Infections by the opportunistic fungal pathogen Candida albicans are widely treated with the antifungal agent fluconazole that inhibits the biosynthesis of ergosterol, the major sterol in the fungal plasma membrane. The emergence of fluconazole-resistant C. albicans strains is a significant problem after long-term treatment of recurrent oropharyngeal candidiasis (OPC) in acquired immunodeficiency syndrome (AIDS) patients. Resistance can be caused by alterations in sterol biosynthesis, by mutations in the drug target enzyme, sterol 14alpha-demethylase (14DM), which lower its affinity for fluconazole, by increased expression of the ERG11 gene encoding 14DM, or by overexpression of genes coding for membrane transport proteins of the ABC transporter (CDR1/CDR2) or the major facilitator (MDR1) superfamilies. Different mechanisms are frequently combined to result in a stepwise development of fluconazole resistance over time. The MDR1 gene is not or barely transcribed during growth in vitro in fluconazole-susceptible C. albicans strains, but overexpressed in many fluconazole-resistant clinical isolates, resulting in reduced intracellular fluconazole accumulation. The activation of the gene in resistant isolates is caused by mutations in as yet unknown trans-regulatory factors, and the resulting constitutive high level of MDR1 expression causes resistance to other toxic compounds in addition to fluconazole. Disruption of both alleles of the MDR1 gene in resistant C. albicans isolates abolishes their resistance to these drugs, providing genetic evidence that MDR1 mediates multidrug resistance in C. albicans.  相似文献   

5.
6.
7.
Candida dubliniensis is a recently described opportunistic fungal pathogen that is closely related to Candida albicans but differs from it with respect to epidemiology, certain virulence characteristics, and the ability to develop fluconazole resistance in vitro. A comparison of C. albicans and C. dubliniensis at the molecular level should therefore provide clues about the mechanisms used by these two species to adapt to their human host. In contrast to C. albicans, no auxotrophic C. dubliniensis strains are available for genetic manipulations. Therefore, we constructed homozygous ura3 mutants from a C. dubliniensis wild-type isolate by targeted gene deletion. The two URA3 alleles were sequentially inactivated using the MPA(R)-flipping strategy, which is based on the selection of integrative transformants carrying a mycophenolic acid resistance marker that is subsequently deleted again by site-specific, FLP-mediated recombination. The URA3 gene from C. albicans (CaURA3) was then used as a selection marker for targeted integration of a fusion between the C. dubliniensis MDR1 (CdMDR1) promoter and a C. albicans-adapted GFP reporter gene. Uridine-prototrophic transformants were obtained with high frequency, and all transformants of two independent ura3-negative parent strains had correctly integrated the reporter gene fusion into the CdMDR1 locus, demonstrating that the CaURA3 gene can be used for efficient and specific targeting of recombinant DNA into the C. dubliniensis genome. Transformants carrying the reporter gene fusion did not exhibit detectable fluorescence during growth in yeast extract-peptone-dextrose medium in vitro, suggesting that CdMDR1 is not significantly expressed under these conditions. Fluconazole had no effect on MDR1 expression, but the addition of the drug benomyl strongly activated the reporter gene fusion in a dose-dependent fashion, demonstrating that the CdMDR1 gene, which encodes an efflux pump mediating resistance to toxic compounds, is induced by the presence of certain drugs.  相似文献   

8.
Many Candida albicans azole-resistant (AR) clinical isolates overexpress the CDR1 and CDR2 genes encoding homologous multidrug transporters of the ATP-binding cassette family. We show here that these strains also overexpress the PDR16 gene, the orthologue of Saccharomyces cerevisiae PDR16 encoding a phosphatidylinositol transfer protein of the Sec14p family. It has been reported that S. cerevisiae pdr16Delta mutants are hypersusceptible to azoles, suggesting that C. albicans PDR16 may contribute to azole resistance in these isolates. To address this question, we deleted both alleles of PDR16 in an AR clinical strain overexpressing the three genes, using the mycophenolic acid resistance flipper strategy. Our results show that the homozygous pdr16Delta/pdr16Delta mutant is approximately twofold less resistant to azoles than the parental strain whereas reintroducing a copy of PDR16 in the mutant restored azole resistance, demonstrating that this gene contributes to the AR phenotype of the cells. In addition, overexpression of PDR16 in azole-susceptible (AS) C. albicans and S. cerevisiae strains increased azole resistance by about twofold, indicating that an increased dosage of Pdr16p can confer low levels of azole resistance in the absence of additional molecular alterations. Taken together, these results demonstrate that PDR16 plays a role in C. albicans azole resistance.  相似文献   

9.
Candida albicans is the most frequently isolated fungus in immunocompromised patients associated with mucosal and deep-tissue infections, To investigate the correlation between virulence and resistance on a gene expression profile in C. albicans, we examined the changes in virulence-related genes during the development of resistance in C, albicans from bone marrow transplant patients using a constructed cDNA array representing 3096 unigenes. In addition to the genes known to be associated with azole resistance,16 virulence-related genes were identified, whose differential expressions were newly found to be associated with the resistant phenotype. Differential expressions for these genes were confirmed by RT-PCR independently. Furthermore, the up-regulation of EFG1, CPH2, TEC1, CDC24, SAP10, ALS9, SNF1, SP072 and BDF1, and the down-regulation of RAD32, IPF3636 and UB14 resulted in stronger virulence and invasiveness in the resistant isolates compared with susceptible ones. These findings provide a link between the expression of virulence genes and development of resistance during C. albicans infection in bone marrow transplant (BMT) patients, where C. albicans induces hyphal formation and expression change in multiple virulence factors.  相似文献   

10.
Candida dubliniensis is a pathogenic yeast species that was first identified as a distinct taxon in 1995. Epidemiological studies have shown that C. dubliniensis is prevalent throughout the world and that it is primarily associated with oral carriage and oropharyngeal infections in human immunodeficiency virus (HIV)-infected and acquired immune deficiency syndrome (AIDS) patients. However, unlike Candida albicans, C. dubliniensis is rarely found in the oral microflora of normal healthy individuals and is responsible for as few as 2% of cases of candidemia (compared to approximately 65% for C. albicans). The vast majority of C. dubliniensis isolates identified to date are susceptible to all of the commonly used antifungal agents, however, reduced susceptibility to azole drugs has been observed in clinical isolates and can be readily induced in vitro. The primary mechanism of fluconazole resistance in C. dubliniensis has been shown to be overexpression of the major facilitator efflux pump Mdr1p. It has also been observed that a large number of C. dubliniensis strains express a non-functional truncated form of Cdr1p, and it has been demonstrated that this protein does not play a significant role in fluconazole resistance in the majority of strains examined to date. Data from a limited number of infection models reflect findings from epidemiological studies and suggest that C. dubliniensis is less pathogenic than C. albicans. The reasons for the reduced virulence of C. dubliniensis are not clear as it has been shown that the two species express a similar range of virulence factors. However, although C. dubliniensis produces hyphae, it appears that the conditions and dynamics of induction may differ from those in C. albicans. In addition, C. dubliniensis is less tolerant of environmental stresses such as elevated temperature and NaCl and H(2)O(2) concentration, suggesting that C. albicans may have a competitive advantage when colonising and causing infection in the human body. It is our hypothesis that a genomic comparison between these two closely-related species will help to identify virulence factors responsible for the far greater virulence of C. albicans and possibly identify factors that are specifically implicated in either superficial or systemic candidal infections.  相似文献   

11.
H A Smith  J W Gorman  Y Koltin  J A Gorman 《Gene》1990,90(1):115-123
Expression of the beta-tubulin-encoding gene (TUB2) of Candida albicans has been examined in Saccharomyces cerevisiae. Overexpression of the TUB2 gene of C. albicans, as well as that of S. cerevisiae, was found to be lethal. Chromosomal integration of the C. albicans TUB2 gene into a strain in which the native TUB2 gene had been deleted led to functional complementation. The results demonstrate that correct splicing of the two introns present in the C. albicans TUB2 gene occurs in the heterologous host strain containing this gene. Such strains are supersensitive to the tubulin-binding agent benomyl, indicating that the natural resistance of C. albicans to benomyl is not related to the structure of its beta-tubulin.  相似文献   

12.
The many drugs that are available at present to treat fungal infections can be divided into four broad groups on the basis of their mechanism of action. These antifungal agents either inhibit macromolecule synthesis (flucytosine), impair membrane barrier function (polyenes), inhibit ergosterol synthesis (allylamines, thiocarbamates, azole derivatives, morpholines), or interact with microtubules (griseofulvin). Drug resistance has been identified as the major cause of treatment failure among patients treated with flucytosine. A lesion in the UMP-pyrophosphorylase is the most frequent clinical determinant of resistance to 5FC in Candida albicans. Despite extensive use of polyene antibiotics for more than 30 years, emergence of acquired resistance seems not be a significant clinical problem. Polyene-resistant Candida isolates have a marked decrease in their ergosterol content. Acquired resistance to allylamines has not been reported from human pathogens, but, resistant phenotypes have been reported for variants of Saccharomyces cerevisiae and of Ustilago maydis. Tolerance to morpholines is seldom found. Intrinsic resistance to griseofulvin is due to the absence of a prolonged energy-dependent transport system for this antibiotic. Resistance to azole antifungal agents is known to be exceptional, although it does now appear to be increasing in importance in some groups of patients infected with e.g. Candida spp., Histoplasma capsulatum or Cryptococcus neoformans. For example, resistance to fluconazole is emerging in C. albicans, the major agent of oro-pharyngeal candidosis in AIDS patients, after long-term suppressive therapy. In the majority of cases, primary and secondary resistance to fluconazole and cross-resistance to other azole antifungal agents seems to originate from decreased intracellular accumulation of the azoles, which may result from reduced uptake or increased efflux of the molecules. In most C. albicans isolates the decreased intracellular levels can be correlated with enhanced azole efflux, a phenomenon linked to an increase in the amounts of mRNA of a C. albicans ABC transporter gene CDR1 and of a gene (BEN(r) or CaMDR) coding for a transporter belonging to the class of major facilitator multidrug efflux transporters. Not only fluconazole, ketoconazole and itraconazole are substrates for CDR1, terbinafine and amorolfine have also been established as substrates, BEN(r) overexpression only accounts for fluconazole resistance. Other sources of resistance: changes in membrane sterols and phospholipids, altered or overproduced target enzyme(s) and compensatory mutations in the Delta5,6-desaturase.  相似文献   

13.
14.
The dihydrofolate reductase gene from Candida albicans has been cloned and partially characterized. A genomic bank from C. albicans strain 10127/5 was constructed in Escherichia coli and screened for trimethoprim resistance. A plasmid pMF1, carrying the resistance marker was isolated and characterized by restriction mapping and Southern blotting. Cells harbouring pMF1 were as sensitive as the parental cells to a wide spectrum of antibacterial agents, except for trimethoprim; the dihydrofolate reductase activity from these cells was trimethoprim resistant.  相似文献   

15.
Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification.  相似文献   

16.
D R Kirsch  M H Lai  J O'Sullivan 《Gene》1988,68(2):229-237
The Saccharomyces cerevisiae cytochrome P450 L1A1 (lanosterol 14 alpha-demethylase)-coding gene was used as a hybridization probe to isolate two HindIII fragments of 2.5 kb and 6.85 kb from a phage lambda library of Candida albicans nucleotide sequences. Restriction endonuclease mapping and Southern blot hybridization experiments indicated that these fragments represent two allelic forms of the same gene. This cloned sequence, when introduced into S. cerevisiae or C. albicans on a multiple copy vector, produced an increase in cytochrome P450 content and resistance to imidazole antifungal agents which are inhibitors of cytochrome P450 L1A1. In addition, the cloned sequence was able to complement a cytochrome P450 L1A1 gene disruption when introduced into S. cerevisiae. These data indicate that the cloned sequence codes for the lanosterol 14 alpha-demethylase cytochrome P450 L1A1 from C. albicans.  相似文献   

17.
Regulation of gene expression has been studied extensively in Saccharomyces cerevisiae and Schizosaccharomyces pombe . Some, but by far not all, of the findings are also applicable to Candida albicans , an important ascomycete fungal pathogen of humans. Areas of research in C. albicans include the influence of key signal transduction cascades on morphology, and the response to host-generated influences, such as host immune effector cells, blood, pH or elevated carbon dioxide. The resistance to antifungal agents and response to stress are also well researched. Conditional gene expression and reporter genes adapted to the codon usage of C. albicans are now widely used in C. albicans . Here we present a comprehensive overview of the current techniques used to investigate regulation mechanisms for promoters in C. albicans and other Candida species. In addition, we discuss reporter genes used for the study of gene expression.  相似文献   

18.
Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.  相似文献   

19.
20.
An understanding of the complex interactions between pathogenic microbes and their host must include the identification of gene expression patterns during infection. To detect the activation of virulence genes in the opportunistic fungal pathogen Candida albicans in vivo by host signals, we devised a reporter system that is based on FLP-mediated genetic recombination. The FLP gene, encoding the site-specific recombinase FLP, was genetically modified for expression in C. albicans and fused to the promoter of the SAP2 gene that codes for one of the secreted aspartic proteinases, which are putative virulence factors of C. albicans. The SAP2P-FLP fusion was integrated into one of the SAP2 alleles in a strain that contained a deletable marker that conferred resistance to mycophenolic acid and was flanked by direct repeats of the FLP recognition target (FRT). Using this reporter system, a transient gene induction could be monitored at the level of single cells by the mycophenolic acid-sensitive phenotype of the colonies generated from such cells after FLP-mediated marker excision. In two mouse models of disseminated candidiasis, SAP2 expression was not observed in the initial phase of infection, but the SAP2 gene was strongly induced after dissemination into deep organs. In contrast, in a mouse model of oesophageal candidiasis in which dissemination into internal organs did not occur, no SAP2 expression was detected at any time. Our results support a role of the SAP2 gene in the late stages of an infection, after fungal spread into deep tissue. This new in vivo expression technology (IVET) for a human fungal pathogen allows the detection of virulence gene induction at different stages of an infection, and therefore provides clues about the role of these genes in the disease process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号