首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
A motif is a short DNA or protein sequence that contributes to the biological function of the sequence in which it resides. Over the past several decades, many computational methods have been described for identifying, characterizing and searching with sequence motifs. Critical to nearly any motif-based sequence analysis pipeline is the ability to scan a sequence database for occurrences of a given motif described by a position-specific frequency matrix. RESULTS: We describe Find Individual Motif Occurrences (FIMO), a software tool for scanning DNA or protein sequences with motifs described as position-specific scoring matrices. The program computes a log-likelihood ratio score for each position in a given sequence database, uses established dynamic programming methods to convert this score to a P-value and then applies false discovery rate analysis to estimate a q-value for each position in the given sequence. FIMO provides output in a variety of formats, including HTML, XML and several Santa Cruz Genome Browser formats. The program is efficient, allowing for the scanning of DNA sequences at a rate of 3.5 Mb/s on a single CPU. Availability and Implementation: FIMO is part of the MEME Suite software toolkit. A web server and source code are available at http://meme.sdsc.edu.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
GAME: detecting cis-regulatory elements using a genetic algorithm   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.

Background

Motif analysis methods have long been central for studying biological function of nucleotide sequences. Functional genomics experiments extend their potential. They typically generate sequence lists ranked by an experimentally acquired functional property such as gene expression or protein binding affinity. Current motif discovery tools suffer from limitations in searching large motif spaces, and thus more complex motifs may not be included. There is thus a need for motif analysis methods that are tailored for analyzing specific complex motifs motivated by biological questions and hypotheses rather than acting as a screen based motif finding tool.

Methods

We present Regmex (REGular expression Motif EXplorer), which offers several methods to identify overrepresented motifs in ranked lists of sequences. Regmex uses regular expressions to define motifs or families of motifs and embedded Markov models to calculate exact p-values for motif observations in sequences. Biases in motif distributions across ranked sequence lists are evaluated using random walks, Brownian bridges, or modified rank based statistics. A modular setup and fast analytic p value evaluations make Regmex applicable to diverse and potentially large-scale motif analysis problems.

Results

We demonstrate use cases of combined motifs on simulated data and on expression data from micro RNA transfection experiments. We confirm previously obtained results and demonstrate the usability of Regmex to test a specific hypothesis about the relative location of microRNA seed sites and U-rich motifs. We further compare the tool with an existing motif discovery tool and show increased sensitivity.

Conclusions

Regmex is a useful and flexible tool to analyze motif hypotheses that relates to large data sets in functional genomics. The method is available as an R package (https://github.com/muhligs/regmex).
  相似文献   

18.
19.

Background

Previous studies show various results obtained from different motif finders for an identical dataset. This is largely due to the fact that these tools use different strategies and possess unique features for discovering the motifs. Hence, using multiple tools and methods has been suggested because the motifs commonly reported by them are more likely to be biologically significant.

Results

The common significant motifs from multiple tools can be obtained by using MOTIFSIM tool. In this work, we evaluated the performance of MOTIFSIM in three aspects. First, we compared the pair-wise comparison technique of MOTIFSIM with the un-gapped Smith-Waterman algorithm and four common distance metrics: average Kullback-Leibler, average log-likelihood ratio, Chi-Square distance, and Pearson Correlation Coefficient. Second, we compared the performance of MOTIFSIM with RSAT Matrix-clustering tool for motif clustering. Lastly, we evaluated the performances of nineteen motif finders and the reliability of MOTIFSIM for identifying the common significant motifs from multiple tools.

Conclusions

The pair-wise comparison results reveal that MOTIFSIM attains better performance than the un-gapped Smith-Waterman algorithm and four distance metrics. The clustering results also demonstrate that MOTIFSIM achieves similar or even better performance than RSAT Matrix-clustering. Furthermore, the findings indicate if the motif detection does not require a special tool for detecting a specific type of motif then using multiple motif finders and combining with MOTIFSIM for obtaining the common significant motifs, it improved the results for DNA motif detection.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号