首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The median eminence (ME) of the adult frog, Rana temporaria, was studied by means of electron microscopy including quantitative electron-microscopic autoradiography. In frogs captured in May and June numerous peptidergic neurosecretory fibres extending via the internal zone to the pars nervosa display large swellings containing few granules, mitochondria, neurotubules and cisternae of the smooth endoplasmic reticulum. In addition, few secretory globules up to 1.5 m in diameter occur in these varicosities. In animals collected during the autumn period many of these neurosecretory swellings filled with neurosecretory granules and polymorphic inclusions resemble Herring bodies. Three types of granule-containing neurosecretory fibres were observed in the external zone (EZ) of the ME of adult R. temporaria. Peptidergic A1- and A2-type fibres are characterized by granules 150–220 nm and 100–160 nm in diameter, respectively. Monoaminergic fibres of type B with granules approximately 100 nm in diameter represent 50% of all neurosecretory elements in the EZ of the frog ME; 12% of the total number of granule-bearing axons in the EZ actively taking up radiolabelled 5-hydroxytryptophan are thought to be serotoninergic terminals. Neurosecretory terminals of all types and glial vascular endfeet establish direct contacts with the perivascular space of the primary portal capillaries. Some neurosecretory terminals are separated from the lumen of the third ventricle by a thin cytoplasmic lamella of tanycytes. The possible physiological significance of this structural pattern is discussed.  相似文献   

2.
Summary The innervation pattern of distal muscle fibers of the opener muscle of walking legs of crayfish (Astacus leptodactylus) was investigated using methylene-blue staining, cobalt infiltration, and electron microscopy. A quantitative analysis of the entire innervation of single muscle fibers was attempted.It was found that instead of the generally assumed parallel array of numerous excitatory and inhibitory terminals, innervation consists of only a few branched terminals. The branches of excitatory and inhibitory terminals lie side-by-side. Both types are characterized by numerous varicosities (see Fig. 9B). The aggregate length of excitatory as well as inhibitory terminals on one muscle fiber is, on the average, about 1,500 m with a total of 152 varicosities spaced about 10 m apart. The average diameter of the varicosities is 4.26 m, that of the connecting thin segments about 0.5 m. Total terminal surface of motor or inhibitory terminals amounts to about 10,000 m2 per muscle fiber. There are approximately 2,000 motor synapses on each muscle fiber, but their average total area is only about 6% of the terminal membrane area, or 0.06% of the (idealized) muscle fiber surface.There are conspicuous differences in the postsynaptic specializations associated with excitatory and inhibitory terminals; these are described in detail.The results are discussed in a functional context and with regard to design and results of electrophysiological experiments.Supported by Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft  相似文献   

3.
Summary Electron microscopy of the median eminence (ME) of the Mongolan gerbil (Meriones unguiculatus) revealed that, unlike most other mammalian species, abundant neurohaemal contacts were present not only in the external zone (EZ), but also in the internal zone (IZ) up to the subependymal layer. In the IZ, nerve terminals with dense core vesicles and/or small clear vesicles abutted on the outer basal lamina of the perivascular space of portal capillaries, alternating with tanycyte processes. In addition to these neurohaemal contacts, several layers of vesicle-filled varicosities surrounded the portal vasculature. An analysis of serial thin sections showed that the latter varicosities could also reach the perivascular basal lamina or contact it through small extensions in other planes of section. Apparently at least some of the nerve terminals making neurohaemal contacts were en passant in nature. A correlative investigation of synaptophysin (a major integral membrane protein of small synaptic vesicles) immunoreactivity at the light microscopical level demonstrated a conspicuously dense immunostaining around portal capillaries in both EZ and IZ of the proximal and distal ME (neural stalk). Since this perivascular accumulation of immunoreactivity coincides precisely with the ultrastructural accumulation of vesicle-filled axons which establish numerous neurohaemal contacts, it is concluded that this pattern of synaptophysin immunostaining indicates sites of neurohaemal contacts at the light microscopical level. During postnatal development, the perivascular concentration of synaptophysin immunoreactivity in the IZ appeared concomitantly with the early postnatal expansion of long portal capillary loops into the IZ. By direct electron-microscopical demonstration and indirect immunohistochemical evidence, the present study of the gerbil ME reveals that the whole extent of portal capillaries up to the subependymal layer constitutes an area for numerous neurohaemal contacts. Hence, the common view that neurohaemal contacts are restricted to the EZ of the mammalian ME is not generally valid.  相似文献   

4.
The coexistence of met5- and leu5-enkephalin-like immunoreactivities with catecholamines in the rat adrenal medulla was studied with combined fluorescence microscopy and immunocytochemistry. Both met5- and leu5-enkephalin-like immunoreactivities were localized in few heavily stained adrenaline cells and in a population of nerves innervating adrenaline cells and as well as ganglion cells among the adrenaline cells. Only occasionally single noradrenaline cells exhibited light immunostaining for both enkephalins but no positive fibers could be found around the noradrenaline cells. In electron microscope the immunoreaction was seen in the granules of the adrenaline cells and in the large synaptic vesicles of the nerve terminals around the adrenaline cells. The present findings suggest that enkephalin-like immunoreactivity coexists mainly with adrenaline in rat adrenal medulla and that the enkephalin immunoreactive terminals regulate secretion of adrenaline from rat adrenal medulla.  相似文献   

5.
Summary Somatostatin-like immunoreactivity was localized in nerve cell bodies and nerve terminals in the cat coeliac ganglion. Two types of somatostatin-immunoreactive cell bodies were revealed, the first being large (diameter 35 m), numerous and weakly labelled, where—as the second was considerably smaller (diameter 10.4 m), sparsely distributed and heavily stained. The immunoreactive nerve terminals were in synaptic contact with many immunonegative large neurons and dendrites. However, in a few cases, somatostatin-immunoreactive nerve terminals could also be observed on the surface of lightly stained neurons. Transection of vagal or mesenteric nerve failed to affect the distribution or density of somatostatin-like immunoreactive nerve terminals. These results demonstrate the existence of a synaptic input to the principal neurons of the coeliac ganglion of the cat by somatostatin-containing nerve terminals and suggest that this peptide may act as a neuromodulator or neurotransmitter. It is proposed that somatostatin-positive neurons provide intrinsic projections to other somatostatin-positive and to somatostatin-negative neurons throughout the coeliac ganglion, thereby creating a complex interneuronal system.  相似文献   

6.
Summary The presence of immunoreactive enkephalin, dynorphin, vasoactive intestinal polypeptide, cholecystokinin, substance P and neuropeptide Y in nerve fibers that project to the guinea-pig inferior mesenteric ganglion was analysed, after different denervation and ligation procedures. A quantitative analysis demonstrates that enkephalin- and substance P fibers reach the ganglion mainly via lumbar splanchnic and partly via intermesenteric nerves. Dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin fibers reach the ganglion mainly via colonic and partly via hypogastric or intermesenteric nerves. Neuropeptide Y fibers enter via intermesenteric, lumbar splanchnic and hypogastric nerves and pass through the ganglion. Analysis of serial 0.5 m sections tends to confirm co-existence: of dynorphin, vasoactive intestinal polypeptide and cholecystokinin in fibers projecting from the colon; of dynorphin with substance P in the lumbar splanchnic nerves; and of neuropeptide Y with substance P in the hypogastric and colonic fibers. Synaptic contacts, predominantly axodendritic, onto the ganglion cells from enkephalin-, vasoactive intestinal polypeptide-, and substance P-containing terminals were revealed by electron microscopy. Enkephalin-immunoreactive axon varicosities are filled with small, clear vesicles with a few large, cored vesicles and form asymmetric synapses; dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive axon varicosities are rich in large, dense-cored vesicles and form symmetric synapses.  相似文献   

7.
Summary The coexistence of met5- and leu5-enkephalinlike immunoreactivities with catecholamines in the rat adrenal medulla was studied with combined fluorescence microscopy and immunocytochemistry. Both met5- and leu5-enkephalin-like immunoreactivities were localized in few heavily stained adrenaline cells and in a population of nerves innervating adrenaline cells and as well as ganglion cells among the adrenaline cells. Only occasionally single noradrenaline cells exhibited light immunostaining for both enkephalins but no positive fibers could be found around the noradrenaline cells. In electron microscope the immunoreaction was seen in the granules of the adrenaline cells and in the large synaptic vesicles of the nerve terminals around the adrenaline cells. The present findings suggest that enkephalin-like immunoreactivity coexists mainly with adrenaline in rat adrenal medulla and that the enkephalin immunoreactive terminals regulate secretion of adrenaline from rat adrenal medulla.  相似文献   

8.
Summary The occurrence of substance P-like immunoreactivity was studied in the locust brain at light and electron microscopic level using monoclonal IgG fraction to substance P. Small immunoreactive perikarya have been found beside the medial neurosecretory cells in horizontal brain sections. Widespread immunoreactivity was also observed in the protocerebral neuropil notably in the central body and bordering on the corpora pedunculata. The reaction endproduct appeared as fine, more or less round particles in the central body, and as coarse varicosities and wavy fibres bordering the peduncles. The roundish particles probably represent nerve terminals, while the wavy fibers correspond to neural processes. In the vicinity of the lobe immunoreactivity was not observed. Electron microscopically, a number of immunoreactive terminals were found in the protocerebral neuropil. The reaction endproduct was accumulated mostly in large dense core granules/average diameter 80 nm/however reaction endproduct was also observed on the external surface membranes of clear vesicles and mitochondria. Our results suggest the widespread occurrence of a substance-P immunoreactive neuropeptide in the cerebral ganglia of the migratory locust.  相似文献   

9.
Böck  P.  Gorgas  K. 《Cell and tissue research》1976,170(1):95-112
Summary A light and electron microscopic study was undertaken on the baroreceptor axon terminals in the carotid sinus of guinea pigs and mice, using serial semithin and thin sections.Together with their enveloping Schwann cells, numerous lanceolate axon terminals are organized into a well-defined discoid end organ, referred to as the baroreceptor unit. Baroreceptor units measure 100 to 150 m in diameter and are arranged in a hexagonal pattern. These end organs represent free branched lanceolate mechanoreceptors of complex type (Andres and von Düring, 1973) which belong to the main group of stretch receptors.In the guinea pig the lanceolate terminals enter the media and approach the innermost layers near the intima. In the mouse the terminals are seen to spread in the adventitia and along the medio-adventitial border. Only a few of them penetrate the external elastic layer. Species differences concerning the localization and extent of these visceral mechanoreceptors are discussed, as well as the modified architecture of the sinus wall in the receptor area (elastic segment).Lanceolate terminals form beaded varicosities which are equipped with finger-like or lamellar axoplasmic protrusions. These projections contain a well-differentiated receptor matrix. They are attached to collagen and elastic fibers. The varicosities include densely packed mitochondria, neurotubules, profiles of axoplasmic reticulum, clear and granular vesicles, and striking accumulations of glycogen particles, lamellated bodies and lysosomes. Four types of varicosities are discerned according to their main axoplasmic components. Various types of these varicosities occur within an individual lanceolate terminal.The adrenergic innervation of the carotid sinus was studied by fluorescence histochemistry. In guinea pigs a multilayered wide-meshed plexus of fluorescent fibers occurs in the adventitia where it is closely related to baroreceptor stem fibers. However, adrenergic axons do not enter the media. In mice fluorescent fibers are extremely rare in the adventitia of the carotid sinus.Dedicated to Prof. Dr. Drs.h.c. W. Bargmann on the occasion of his 70th birthdaySupported by a grant from the Deutsche Forschungsgemeinschaft Nr. Bo/525-1. These results were presented in part at the 17. Tagung der Deutschen Gesellschaft für Elektronenmikroskopie, Berlin, Sept. 21.–26., 1975  相似文献   

10.
Summary The distribution of monoamines in the pharynx and oesophagus of the rhesus monkey (Macacus rhesus) and the cat (Felis domestica) was investigated by means of fluorescence microscopical and chemical methods. Fluorimetric determinations reveal the presence of varying amounts of noradrenaline in the pharynx and oesophagus of the rhesus monkey. The lowest amount (0.05 (g/g) was found in the lower part of the oesophagus, the so-called sphincter-segment. The middle and upper part of the oesophagus contain medium amounts of noradrenaline (0.06–0.09 g) whereas the highest concentration was detected in the pharynx (0.14 (g/g). Neither dopamine nor adrenaline occurred in the tissue pieces analyzed. Fluorescence microscopically noradrenaline was found to be located in varicose intramural nerve fibre plexus which innervate mucous glands and blood vessels in the pharynx of both species. In the rhesus monkey, the lamina muscularis mucosae of all parts of the oesophagus is supplied by a well developed noradrenergic ground-plexus. Preterminal and terminal varicose nerve fibres are distributed in myenteric and submucous ganglia of the oesophagus; the number of such ganglia decreases towards the lower segment. The density of the adrenergic innervation is higher in myenteric when compared to submucous ganglia. The arrangement of the intraganglionic terminals suggests that both axosomatic and axodendritic contacts occur in Auerbach's ganglia whereas axodendritic contacts seem to predominate in Meissner's ganglia. Myenteric ganglia situated close to the submucosa as well as true submucous ganglia may be occasionally seen to be traversed by faintly fluorescent non-varicosed fibres which do not establish any synaptic contacts. The fluorescence intensity of intraganglionic varicosities varies considerably; accordingly the transmitter content of individual varicosities seems to be very variable. The adrenergic innervation of the lamina muscularis is restricted to single contorted fibres being sparsely distributed throughout the longitudinal smooth muscle layer. The circularly arranged smooth musculature of the sphincter-segment lacks an adrenergic nerve supply. The vagus nerve carries sympathetic adrenergic fibres to the lower oesophagus and the cardia. Species differences between the innervation pattern in rhesus monkeys and cats are outlined: No adrenergically innervated ganglia occur in the submucosa of the cat. However, part of the myenteric ganglia in cats exhibit an adrenergic innervation pattern similar to that seen in submucous ganglia of the rhesus monkey. They might therefore be regarded as morphologically equivalent to the plexus submucosus which is, however, present in the whole gut. The density of the noradrenergic ground-plexus in the muscularis mucosae of the cat's oesophagus is less than that of the corresponding plexus in rhesus monkeys.The influence of noradrenaline upon the smooth musculature and the neurons from myenteric as well as submucous ganglia is discussed. From the point of view of the adrenergic innervation there is no structure corresponding to the sphincterlike lower oesophageal segment.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius-Gesellschaft zur Förderung der Wissenschaften, Hamburg.  相似文献   

11.
Using a biotin-streptavidin-horseradish peroxidase (HRP) immunohistochemical technique the distribution of substance P-immunoreactive neuronal elements was investigated in the rat suprachiasmatic nucleus (SCN). Substance P-immunoreactive nerve fibres and varicosities were distributed throughout the suprachiasmatic nucleus, with the largest accumulation in its ventral part. Because this location overlaps with the innervation of retinal afferents, the distribution and density of substance P-immunoreactive fibres in bilaterally enucleated rats were compared to normal rats. The density of substance P-immunoreactive fibres and nerve terminals in the ventral part of the suprachiasmatic nuclei was reduced in the rats with bilateral destruction of the optic nerves, whereas the density of fibres and nerve terminals in the dorsal part as well as other retinal target areas in the thalamus and mesencephalon was unaffected. In rats pretreated with an intraventricular injection of colchicine several substance P-immunoreactive perikarya were identified in the suprachiasmatic nucleus. The immunoreactive neurons, measuring 9.7 m±1.1 m in diameter, were frequently observed in the central core of the nucleus and to a lesser extent in the dorsomedial and ventrolateral subparts. Using in situ hybridization histochemistry pre-protachykinin-A mRNA was found in the same part of the SCN indicating that synthesis of substance P takes place in SCN neurons. Using a double immunohistochemical approach applying diaminobenzidine and benzidinedihydrochloride as chromagens substance P-, vasoactive intestinal peptide (VIP)-, and vasopressin/neurophysin-immunoreactivities were identified in the same brain section. The substance P-immunoreactive perikarya constituted a separate population of SCN neurons, which were not vasopressin-, neurophysin- or VIP-immunoreactive. Taken together, these observations show that substance P is contained in the retinohypothalamic pathway and within a group of SCN cell bodies, indiating that substance P may play a role in the generation and entrainment of circadian rhythmicity.  相似文献   

12.
Summary The serotonergic innervation of the genital chamber of the female cricket, Acheta domestica, has been investigated applying anti-serotonin (5-HT) immunocyto-chemistry at both light- and electron-microscopic levels as well as using conventional electron microscopy. Whole mount and pre-embedding chopper techniques of immuno-cytochemistry reveal a dense 5-HT-immunoreactive network of varicose fibers in the musculature of the genital chamber. All of these immunoreactive fibers originate from the efferent serotonergic neuron projecting through the nerve 8v to the genital chamber (Hustert and Topel 1986; Elekes et al. 1987). At the electron-microscopic level, 5-HT-immunoreactive nerve terminals, which contain small (50–60 nm) and large ( 100 nm) agranular vesicles as well as granular vesicles (100nm), contact the muscle fibers or the sarcoplasmic processes without establishing specialized neuromuscular connections. In addition to the 5-HT-immunoreactive axons, two types of immunonegative axons can also be found in the musculature. By use of conventional electron microscopy, three ultrastructurally distinct types of axon processes can be observed, one of which resembles 5-HT-immunoreactive axons. While the majority of the varicosities do not synapse on the muscle fibers, terminals containing small (50–60 nm) agranular vesicles occasionally form specialized neuromuscular contacts. It is suggested that the 5-HTergic innervation plays a non-synaptic modulatory role in the regulation circular musculature in the genital chamber of the cricket, while the musculature as a whole may be influenced by both synaptic and modulatory mechanisms.Fellow of the Alexander von Humboldt-Stiftung  相似文献   

13.
Summary The moderator band in the heart of the ox and goat contains bundles of Purkinje fibers and nerve fibers separated by connective tissue. The axons are mostly unmyelinated and embedded in the cytoplasm of Schwann cells.Small bundles of axons run close to the Purkinje fibers. The axons dilate into varicosities 0.5 to 1.6 in diameter (mean 0.95 ), containing three types of vesicles: 1) agranular vesicles with a diameter of 400–500 Å, 2) large dense-cored vesicles with a diameter of 800–1200 Å, 3) small dense-cored vesicles with a diameter of 500 Å. Most varicosities contain agranular vesicles together with a few large dense-cored vesicles.The gap between the varicosities and the nearest Purkinje fiber is unusually wide and normally varies between 0.3 and 0.8 . No intimate nerve-Purkinje fiber contacts, with a cleft of 200 Å, were observed.  相似文献   

14.
Summary The cellular localization of dopamine in the caudate nucleus of the rat hat been studied with the highly sensitive and specific fluorescence method of Falck and Hillarp, and by electron microscopy. The histochemical studies provided strong support for the view that the dopamine is concentrated within very fine nerve fibres which have abundant varicosities with an intense fluorescence. The electron microscopical studies revealed the presence of a tightly packed plexus built up i.a. of abundant synaptic nerve terminals, many of which had a diameter below 0.4 . The terminals made synaptic contact mainly with processes that seemed to belong to an extensive dendrite net.The investigation was supported by research grants from the United States Public Health Service (02854-04), The Swedish Medical Research Council and the Knut and Alice Wallenberg Foundation.  相似文献   

15.
Synaptic relationships between ghrelin-like immunoreactive axon terminals and other neurons in the hypothalamic arcuate nucleus (ARC) were studied using immunostaining methods at the light and electron microscope levels. Many ghrelin-like immunoreactive axon terminals were found to be in apposition to ghrelin-like immunoreactive neurons at the light microscopic level. At the electron microscopic level, ghrelin-like immunoreactive axon terminals were found to make synapses on ghrelin-like immunoreactive cell bodies and dendrites in the ARC. While the axo-dendritic synapses between ghrelin- and ghrelin-like immunoreactive neurons were mostly the asymmetric type, the axo-somatic synapses were both asymmetric and symmetric type of synapses. Ghrelin at 10(-10) M increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in the neurons isolated from the ARC, some of which were immunocytochemically identified as ghrelin-positive. Ghrelin at 10(-10) M also increased [Ca(2+)](i) in 12% of ghrelin-like immunoreactive neurons in the ARC. These findings suggest that ghrelin serves as a transmitter and/or modulator that stimulates [Ca(2+)](i) signaling in ghrelin neurons of the ARC, which may participate in the orexigenic action of ghrelin. Our data suggests a possibility of existing a novel circuit implicating regulation of feeding and/or energy metabolism.  相似文献   

16.
P Redecker 《Histochemistry》1991,95(5):503-511
Electron microscopy of the median eminence (ME) of the Mongolian gerbil (Meriones unguiculatus) revealed that, unlike most other mammalian species, abundant neurohaemal contacts were present not only in the external zone (EZ), but also in the internal zone (IZ) up to the subependymal layer. In the IZ, nerve terminals with dense core vesicles and/or small clear vesicles abutted on the outer basal lamina of the perivascular space of portal capillaries, alternating with tanycyte processes. In addition to these neurohaemal contacts, several layers of vesicle-filled varicosities surrounded the portal vasculature. An analysis of serial thin sections showed that the latter varicosities could also reach the perivascular basal lamina or contact it through small extensions in other planes of section. Apparently at least some of the nerve terminals making neurohaemal contacts were en passant in nature. A correlative investigation of synaptophysin (a major integral membrane protein of small synaptic vesicles) immunoreactivity at the light microscopical level demonstrated a conspicuously dense immunostaining around portal capillaries in both EZ and IZ of the proximal and distal ME (neural stalk). Since this perivascular accumulation of immunoreactivity coincides precisely with the ultrastructural accumulation of vesicle-filled axons which establish numerous neurohaemal contacts, it is concluded that this pattern of synaptophysin immunostaining indicates sites of neurohaemal contacts at the light microscopical level. During postnatal development, the perivascular concentration of synaptophysin immunoreactivity in the IZ appeared concomitantly with the early postnatal expansion of long portal capillary loops into the IZ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741.  相似文献   

18.
Summary The pre- and postnatal development of the adrenal medulla was examined in the rat by immunohistochemistry and by assay of catecholamines. Immunohistochemistry involved the use of antibodies to noradrenaline (NA), adrenaline (A) and the biosynthesizing enzymes dopamine -hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). Adrenal glands were obtained from animals from the 16th day of gestation to the 7th postnatal day at daily intervals, and at the 14th postnatal day, and from adult rats. Tissues were fixed in ice-cold, 4% paraformaldehyde, buffered at pH 7.3. Cryostat sections (7 m) were stained with the indirect immunofluorescence technique. Adrenals from the same developmental stages were assayed for the presence of DA (dopamine), NA and A by ion-pair reversed-phase liquid chromatography with electrochemical detection.In adult adrenals the majority of the medullary cells (approximately 80%) were highly immunoreactive to A and moderately immunoreactive to NA. They also showed immunoreactivity to both DBH and PNMT, i.e., they are synthesizing and storing A. The remaining cell clusters were only stained by antibodies to DBH and NA (NA-synthesizing and -storing cells). These findings correlate well with the relative concentrations of A and NA as determined by assay.Three developmental phases could be distinguished. In the first phase, the 16th and 17th prenatal day, medullary cells were only immunoreactive to DBH and NA, and only very small amounts of A as compared to NA were found. During the second period, from the 18th prenatal day to 2 or 3 days after birth, all medullary cells were immunoreactive to DBH, NA, PNMT and A, and during this phase the adrenaline concentration increased daily and became the predominant amine on the 20th day of gestation. Adrenaline represented 75% of total catecholamine on the 1st to 3rd day after birth. The third phase started at the 2nd or 3rd postnatal day and was characterized by the presence of an increasing number of medullary cells solely immunoreactive to DBH and NA, hence synthesizing and storing NA. The remaining cells were immunoreactive to DBH, NA, PNMT and A. Postnatally, the relative concentration of A continued to rise reaching 79% by the 4th postnatal day. These results indicate that initially the adrenal medullary cells are synthesizing and storing almost exclusively NA. Probably, adrenaline synthesis begins at the 16th–17th day of gestation and the cells are then capable of synthesizing and storing both NA and A (mixed cell type) with A synthesis and storage rapidly becoming predominant. Finally, after birth, separate NA-synthesizing and -storing cell types are formed and the so-called A cells stored predominantly (probably >90%) adrenaline with a small proportion of noradrenaline.In the medullary blastema and in the sympathetic ganglia of prenatal animals two cell types, only immunoreactive to DBH and NA, were observed. Presumably, these cells represent developing sympathetic neurons and extra-adrenal chromaffin cells; the latter cell type occasionally invades the adrenal gland. Thus, prospective medullary cells are able to synthesize and store NA before they have made contact with the cortical blastema but A-synthesizing cells are found only within the adrenal gland.Low but significant amounts of DA were found in the adrenal before birth and during the first two postnatal weeks but in the adult animal this accounted for less than 0.1% of total catecholamine.Preliminary reports of this study were made to the American Association of Anatomists (Anat. Rec. 196; 196A, 1980), the Dutch Anatomical Society (Acta Morphol. Neerl. Scand. 19; 330, 1981, and the XIIIth Acta Endocrinologica Congress (Acta Endocrinol. 97: Suppl. 243, 285, 1981)  相似文献   

19.
Summary Distribution of serotonin fibers in the spinal cord of the dog was investigated by means of a modified PAP method; a rabbit anti-serotonin serum prepared in the laboratory of the authors was used in this study. Serotonin fibers were revealed as PAP-positive dark-brown elements displaying dot-like varicosities (0.5–2.0 m in diameter). In the spinal cord of the dog, the distribution of serotonin fibers is extensive. These fibers occur more densely in more caudal segments and are most prominent at the sacrococcygeal level. From the level of the cervical spinal cord to the upper lumbar region, the descending serotonin fibers are located immediately under the pia mater in the ventrolateral portion of the lateral funiculus. In more caudal segments, serotonin fibers are dispersed throughout the ventral and lateral funiculi. These longitudinal en passage-fibers send numerous transverse collaterals to the gray matter. Serotonin fibers are distributed abundantly in the laminae I and III of the posterior column, while only a few fibers are found in the lamina II (substantia gelatinosa). In the intermediate zone, two descending serotonin pathways, i.e., lateral and medial longitudinal bundles, are observed to coincide topographically with the nucleus intermediolateralis at C8(T1)-L3(L4) and the nucleus intermediomedialis at C1-Co respectively. The former is particularly prominent and communicates with the contralateral bundle via commissural bundles at intervals of 300–500 m. The large motoneurons in the anterior column, especially those in the nucleus myorabdoticus lateralis within the cervical and lumbar enlargements, are closely surrounded by fine networks of serotonin fibers and terminals.Supported by a grant (No. 56440022) from the Ministry of Education, Science and Culture, Japan  相似文献   

20.
Summary The neuropeptide- and catecholamine-synthesizing enzyme content and ultrastructure of the peri-ureteric ganglia of guinea-pigs were investigated. Small numbers of neuronal perikarya were present at frequent intervals forming ganglia close to, and along the entire length of, the ureter. Each of these ganglia was surrounded by a connective tissue capsule, and was located in the peri-ureteric connective tissues. Within each ganglion were typical nerve terminals and varicosities containing small, clear synaptic vesicles or synaptic vesicles with an electron-dense core, or a mixture of the two. In the ganglia, immunoreactivity to tyrosine hydroxylase, dopamine hydroxylase, neuropeptide tyrosine, or vasoactive intestinal peptide was present in neuronal perikarya; immunoreactivity to substance P or leucine enkephalin was present in nerve terminals and varicosities. Electron-microscopic immunogold studies indicated that there was no coexistence of substance P and enkephalin in the nerve terminals, unlike related ganglia in the pelvis of guinea-pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号