首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Summary Synaptic junctions are found in all parts of the nucleus, being almost as densely distributed between cell laminae as within these laminae.In addition to the six classical cell laminae, two thin intercalated laminae have been found which lie on each side of lamina 1. These laminae contain small neurons embedded in a zone of small neural processes and many axo-axonal synapses occur there.Three types of axon form synapses in all cell laminae and have been called RLP, RSD and F axons. RLP axons have large terminals which contain loosely packed round synaptic vesicles, RSD axons have small terminals which contain closely packed round vesicles and F axons have terminals intermediate in size containing many flattened vesicles.RLP axons are identified as retinogeniculate fibers. Their terminals are confined to the cell laminae, where they form filamentous contacts upon large dendrites and asymmetrical regular synaptic contacts (with a thin postsynaptic opacity) upon large dendrites and F axons. RSD axons terminate within the cellular laminae and also between them. They form asymmetrical regular synaptic contacts on small dendrites and on F axons. F axons, which also occur throughout the nucleus, form symmetrical regular contacts upon all portions of the geniculate neurons and with other F axons. At axo-axonal junctions the F axon is always postsynaptic.Supported by Grant R 01 NB 06662 from the USPHS and by funds of the Neurological Sciences Group of the Medical Research Council of Canada. Most of the observations were made while R. W. Guillery was a visiting professor in the Department of Physiology at the University of Montreal. We thank the Department of Physiology for their support and Mr. K. Watkins, Mrs. E. Langer and Mrs. B. Yelk for their skillful technical assistance.  相似文献   

2.
S S Tay  T H Williams  J Y Jew 《Peptides》1989,10(1):113-120
Neurotensin (NT) was demonstrated in the central nucleus of the rat amygdala (CNA) using a modification of the avidin-biotin complex immunohistochemical technique. Electron-dense reaction product (particles were 15-25 nm in diameter) was localized in perikarya, dendrites, axons, and axon terminals. It was found also associated with profiles of rough endoplasmic reticulum, mitochondria, microtubules, and small agranular as well as large granular vesicles. In distal dendrites, the reaction product was associated with microtubules, vesicles, and postsynaptic densities. Axon terminals of three types formed synaptic contracts with NT-immunoreactive neurons in the CNA: one was characterized by numerous round or oval agranular vesicles, the second by numerous pleomorphic vesicles, and the third by agranular vesicles that were loosely distributed and pleomorphic. All three types formed symmetric axosomatic and asymmetric axodendritic contacts. NT-immunoreactive axon terminals containing small round agranular vesicles stood out clearly from the intermingling profiles of immunonegative structures. We found numerous glomeruli, each consisting of a central NT-immunoreactive dendrite surrounded by all three types of axon terminals. We observed that some NT-immunoreactive terminals formed symmetric axoaxonal contacts with each other, providing evidence for the presence of local NT-to-NT circuits, whereas many others synapsed with axon terminals devoid of NT immunoreactivity.  相似文献   

3.
The synaptology of neurotensin (NT)-, somatostatin (SS)- and vasoactive intestinal polypeptide (VIP)-immunoreactive neurons was studied in the central nucleus of the rat amygdala (CNA). Three types of axon terminals formed synaptic contacts with peptide-immunoreactive neurons in the CNA: Type A terminals containing many round or oval vesicles; Type B terminals containing many pleomorphic vesicles; and Type C terminals containing fewer, pleomorphic vesicles. Peptide-immunoreactive terminals were type A. All three types of terminals formed symmetrical axosomatic and asymmetrical axodendritic contacts. However, type B and peptide-immunoreactive terminals frequently formed symmetrical axodendritic synaptic contacts. VIP-immunoreactive terminals also formed asymmetrical axodendritic contacts. SS- and NT-immunoreactive terminals commonly formed symmetrical contacts on SS- and NT-immunoreactive cell bodies, respectively. VIP-immunoreactive axon terminals were postsynaptic to nonreactive terminals. Type B terminals appeared more frequently on VIP neurons than on NT or SS neurons.  相似文献   

4.
In order to determine how nociceptive input conveyed by the C-fibers terminating in superficial lam-inae of the spinal cord reaches the wide dynamic range (WDR) cells in deeper dorsal horn, which functions as ascend-ing projection pathway, the morphological features of some WDR cells in the deeper dorsal horn of the cat lumbar spinal cord were studied by intracellular injection of horseradish peroxidase and physiological characterization. One of the fully stained neurons with somata in lamina V and dendrites that entered lamina Ⅱ were examined by electron mi-croscopy. Immunogold staining of ultrathin sections through the labeled proximal dendrites in lamina Ⅱ revealed that these dendrites received numerous synapses from substance P and glutamate immunoreactive (IR) axons, which were considered originating from C-fibers. In addition, many GABA-IR terminals were found presynaptic to the labeled dendrites. The results, therefore, suggest that the information carried by primary afferent can be sent from t  相似文献   

5.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

6.
In the medial and lateral septal nuclei, 4 types of axonal terminals are distinguished. Type I contains spherical vesicles and forms asymmetric synapses on small and middle stems and spines of the dendrites; type I terminals comprise 63% in the medial nucleus of the total number of axons, and in the lateral one--52%. Type II contains polymorphic vesicles and forms symmetrical synapses on the soma and large dendrites. In the medial nucleus they comprise 6%, and in the lateral one--3%. Type III contains either clear spherical (IIIa), or polymorphic (IIIb) vesicles, as well as 1-2 vesicles with a dense core. They form axodendritic, axospine and axosomatic synapses. In the medial nucleus they comprise 25% and 3%, respectively, in the lateral one--40% and 2%. Type IV contains a great number of vesicles with a dense core. These terminals in both septal nuclei comprise 3% and do not participate in formation of active contacts.  相似文献   

7.
The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studied by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80-120 nm dense core granules and 30-50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine-beta-hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial parvocellular subnucleus of PVN. Labeled terminal boutons contained 70-100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN. Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN. In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70-120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons. These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.  相似文献   

8.
Summary Several types of terminals were found in the three superficial collicular layers of Galago. At least two axon terminals with round vesicles (R1 and R2) could be distinguished on the basis of vesicle packing and electron density of the cytoplasmic and mitochondrial matrices. R1 axon terminals were characterized by aggregations of vesicles in an electron lucent cytoplasm and mitochondria with a relatively dark matrix, while in R2 axon terminals the vesicles were more evenly distributed in an electron dense cytoplasm and the mitochondrial matrix was pale. R2 endings occurred in clusters in the stratum griseum superficiale; they were absent in the stratum zonale. R1 endings were found in all three superficial collicular layers. Both types of R terminals made asymmetrical contacts with small dendrites, dendritic spines and F profiles. Profiles containing flattened vesicles and establishing symmetrical contacts were numerous, and many could be identified as dendrites by accepting as criteria for dendrites evenly spaced microtubules, clusters of ribosomes and the fact that these F profiles were postsynaptic to other terminals. F terminals were presynaptic to other F profiles, dendrites and somata; they were postsynaptic to R terminals and took part in serial synapses. Dendrodendritic contacts were frequent, somatodendritic contacts rare. After eye enucleation most R2 axon terminals underwent the electron dense degenerative reaction. The degeneration process was a lengthy one; many degenerating boutons were found 30 days after axotomy and some persisted up to 180 days postoperatively. There was strong indication that the superior colliculus received more crossed than uncrossed retinofugal fibers. The crossed and uncrossed retinocollicular axons terminated in two different substrata of the stratum griseum superficiale.This study was supported by N.I.H. Grant RR-00165 to Yerkes Regional Primate Research Center and N.I.H Grant EY 00638-03 to J. Tigges. — The opportunity to use the electron microscopic facilities of the Fernbank Science Center for the initial stage of this work is gratefully acknowledged.  相似文献   

9.
Summary The cerebrospinal fluid (CSF) contacting neurons have a dendritic process which protrudes into the central canal, and is provided with one long kinocilium and many shorter stereocilia (about 80 in the turtle) as revealed by scanning electron microscopy. The shape, number and arrangement of the cilia are similar to those of known receptor endings.The silver impregnated axons of these cells converge to a paired centrosuperficial tract forming terminal enlargements at the ventrolateral surface of the spinal cord. Lying among glial endfeet these terminals are ultrastructurally similar to those present in known neurosecretory areas. The nerve endings are attached to the basal lamina, and they comprise many synaptic vesicles (200 to 400 Å in diameter), as well as granular vesicles of different sizes (diameter 600 to 1800 Å). The axons may lie within finger-like protrusions on the surface of the spinal cord, or they may terminate around vessels.Morphological evidence suggests that these nerve terminals and the corresponding CSF contacting perikarya represent a spinal neurosecretory system possibly influenced by information taken up by its special dendrites protruding into the inner CSF space.  相似文献   

10.
The ultrastructural features of the primary auditory cortex of the cats and the character of the endings of geniculo-cortical afferent fibers in the early stages of experimental degeneration evoked by destruction of the medial geniculate body were studied. In all layers of the cortex asymmetrical synapses with round synaptic vesicles on dendritic spines and on thin dendritic branches of pyramidal and nonpyramidal neurons are predominant. Symmetrical synapses with flattened or polymorphic vesicles are distributed chiefly on the bodies of the neurons and their large dendrites. Because there are few symmetrical synapses which could be regarded as inhibitory it is postulated that inhibitory influences may also be transmitted through asymmetrical synapses with round vesicles. Other types of contacts between the bodies of neurons, dendrites, and glial processes also were found in the auditory cortex. Degenerating terminals of geniculo-cortical fibers were shown to terminate chiefly in layer IV of the cortex on pyramidal and nonpyramidal neurons. Degeneration was of the dark type in asymmetrical synapses with round vesicles. The results are dicussed in connection with electrophysiological investigations of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 519–524, September–October, 1973.  相似文献   

11.
The present study describes the structural changes in the gracile nucleus of the spontaneously diabetic BB rat. At 3-7 days post-diabetes, axons, axon terminals and dendrites showed electron-dense degeneration. Degenerating axons were characterized by swollen mitochondria, vacuolation, accumulation of glycogen granules, tubulovesicular elements, neurofilaments and dense lamellar bodies. Degenerating axon terminals consisted of an electron-dense cytoplasm containing swollen mitochondria, vacuoles and clustering of synaptic vesicles. These axon terminals made synaptic contacts with cell somata, dendrites and other axon terminals. Degenerating dendrites were postsynaptic to normal as well as degenerating axon terminals. At 1-3 months post-diabetes, degenerating electron-dense axons, axon terminals and dendrites were widely scattered in the neuropil. Macrophages containing degenerating electron-dense debris were also present. At 6 months post-diabetes, the freshly degenerating neuronal elements encountered were similar to those observed at 3-7 days. However, there were more degenerating profiles at 6 months post-diabetes compared to the earlier time intervals. Terminally degenerating axons were vacuolated and their axoplasm appeared amorphous. It is concluded that degenerative changes occur in the gracile nucleus of the spontaneously diabetic BB rat.  相似文献   

12.
Summary The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studred by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80–120 nm dense core granules and 30–50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine--hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial paryocellular subnucleus of PVN. Labeled terminal boutens contained 70–100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN.Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70–120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons.These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.Supported by NIH Grant NS 19266 to W.K. Paull  相似文献   

13.
Summary The noradrenergic terminals in the substantia gelatinosa of the dorsal horn of the cervical spinal cord of the rat were investigated by means of the histofluorescence technique and electron-microscopic cytochemistry using the glyoxylic acid-KMnO4 fixation technique. In accordance with the topographical distribution of fluorescent catecholaminergic fibers, noradrenergic terminals containing small granular vesicles were frequently observed electron microscopically in the outer layer of the substantia gelatinosa. These terminals were most frequently found to appose without showing typical synaptic features, small-caliber dendrites, spine apparatus, and rarely, large caliber dendrites. Only in a few cases, the noradrenergic terminals exhibited typical synaptic contacts with dendritic elements of small size. In addition, noradrenergic terminals apposed non-noradrenergic terminals containing small agranular vesicles. In rats bearing surgical lesions of the dorsal roots, no noradrenergic terminal were found in contact with the degenerated axon terminals in the substantia gelatinosa. These findings suggest that the noradrenergic afferents to the substantia gelatinosa may exert their influence on sensory transmission via dorsal horn cells.  相似文献   

14.
Nigrothalamic neurons were identified in the reticular part of thesubstantia nigra using labelling by the retrograde axonal transport of horseradish peroxidase. Nine parameters of the synaptic contacts (n=195) were analyzed, including the size and shape of terminals and size and type of synaptic vesicies. Sixty-six percent of axon terminals studied formed symmetric contacts and contained large polymorphic vesicles (group I). Two-thirds of these synapses were located on the distal dendrites, while one-third was distributed on the perikarya and proximal dendrites. Synapses of group II (29% of all synapses analyzed) exhibited asymmetric contacts and contained round agranular vesicles. Among these synapses, 79% were located on the distal dendrites, 19% were located on the proximal dendrites, and only 2% were located on the neuronal perikarya. Axon terminals of group III (5% of total population) exhibited symmetric contact and contained small polymorphic vesicles. High-resolution immunogold EM histochemistry indicated that 63% of the group-I axon terminals were GABA-positive. The majority of synapses on the labelled nigrothalamic neurons (21 contacts of 25) belonged to group I. Among these 21 synapses, 19 were axo-somatic and mostly GABA-positive. Within group II, 30% of synapses showed slightly expressed GABA-positivity.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 147–157, March–April, 1995.  相似文献   

15.
Tao YX  Zhao ZQ 《生理学报》1998,50(4):361-366
本文用Fos作为背角伤害性反应神经元活动的一个标志物,结合免疫细胞化学和神经药理学方法,观察了速激肽受体拮抗剂对福尔马林诱发的脊髓c-fos原癌基因表达的影响。一侧大鼠后肢跖部皮下注射福尔马林,仅在同侧脊髓背角有c-fos表达。Fos阳性神经元最密集分布于I层和Ⅱ层背侧的内侧部,中等量分布于Ⅳ层和V型,少量定位于Ⅱ层腹侧部、Ⅲ、Ⅵ和Ⅹ层。若预先在一侧大鼠后肢跖部皮下注射福尔马林前,鞘内给予神经激肽  相似文献   

16.
Summary A quantitative analysis has been made of the distribution of presynaptic profiles containing round (or spheroidal) and flattened (or ellipsoidal) synaptic vesicles in the apical and basal dendritic zones and in the layer of pyramidal cell somata of fields CA1 and CA3 of the hippocampus, and in the molecular and granular layers of the dentate gyrus of the rat and cat.In the apical and basal dendritic zones of fields CA1 and CA3 the overwhelming majority of the synapses are of the asymmetrical variety, the axon terminals ending principally upon dendritic spines, and to a lesser extent upon the shafts and secondary or tertiary branches of the dendrites. Between 1 and 8% of the axon terminals in these zones contained flattened vesicles: all of these formed symmetrical contacts upon medium-sized or large dendritic shafts. In the molecular layer of the dentate gyrus a slightly higher percentage of flattened vesicle containing profiles was observed (10%); again these formed symmetrical contacts upon dendritic shafts. In the stratum pyramidale of the hippocampal fields and the stratum granulosum of the dentate gyrus of the rat, flattened vesicle containing synapses are two or three times more numerous than those with spheroidal vesicles. In the cat hippocampus the axosomatic synapses are about equally distributed between those containing round, and those with flattened vesicles.The finding that at the focus of post-synaptic inhibition, at the level of the pyramidal cell somata, the majority of the axon terminals contains flattened synaptic vesicles, whereas in the region of termination of the extrinsic, commissural and long association pathways (all of which are excitatory) virtually all the synapses contain round vesicles, strongly supports the view that endings containing flattened vesicles mediate post-synaptic inhibition in the hippocampal formation.Supported in part by Grant EY-00599 from the National Eye Institute.We should like to thank Mr. Paul Myers and Mr. Milburn W. Rhoades for their technical assistance, and Mrs. Doris Stevenson for secretarial help.  相似文献   

17.
Anterior dorsal ventricular ridge (ADVR) is a major subcortical, telencephalic nucleus in snakes. Its structure was studied in Nissl, Golgi, and electron microscopic preparations in several species of snakes. Neurons in ADVR form a homogeneous population. They have large nuclei, scattered cisternae of rough endoplasmic reticulum in their cytoplasm, and bear dendrites from all portions of their somata. The dendrites have a moderate covering of pedunculated spines. Clusters of two to five cells with touching somata can be seen in Nissl, Golgi, and electron microscopic preparations. The area of apposition may contain a series of specialized junctions which resemble gap junctions. Three populations of axons can be identified in rapid Golgi preparations of snake ADVR. Type 1 axons course from the lateral forebrain bundle and bear small varicosities about 1 mu long. Type 2 axons arise from ADVR neurons and bear large varicosities about 5 mu long. The origin of the very thin type 3 axons is not known; they bear small varicosities about 1 mu long. The majority of axon terminals in ADVR are small (1 mu to 2 mu long), contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates on dendritic spines and shafts and on somata. A small percentage of terminals are large, 5 mu in length, contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates only on dendritic spines. A small percentage of terminals are small, contain pleomorphic synaptic vesicles, and form symmetric active zones. This type of axon terminates on dendritic shafts and on somata.  相似文献   

18.
The cytology and synaptic organization of the insular trigeminal-cuneatus lateralis (iV-Cul) nucleus was examined in the rat. In addition, the ultrastructural morphology and synaptic connectivity of anterogradely labeled spinal afferent axons terminating in iV-Cul were examined following injection of horseradish peroxidase (HRP) into the cervical spinal cord. The uniformity of the ultrastructural features of iV-Cul neurons supports the presence of a homogeneous neuronal population. The most prominent feature of the iV-Cul neuropil is the presence of numerous interdigitating astrocytic processes, which extensively isolate neuronal somata and processes. iV-Cul contains a heterogeneous population of axonal endings that can be separated into three categories, depending upon whether they contain predominantly spherical-shaped agranular synaptic vesicles (R endings), predominantly pleomorphic-shaped agranular synaptic vesicles (P endings), or a heterogeneous population of dense-core vesicles (DC endings). The R endings represent the majority of axonal endings in iV-Cul and establish asymmetrical axodendritic and axospinous synaptic contacts, primarily along the distal portions of the dendritic tree. P endings establish symmetrical axosomatic, axodendritic, and axospinous synaptic contacts and exhibit a more generalized distribution along the somadendritic tree. DC terminals establish asymmetrical axodendritic synaptic contacts with distal dendritic processes and are the least frequently observed endings in the iV-Cul neuropil. Numerous synaptic glomeruli, exhibiting a single large central R bouton that establishes multiple axodendritic or axospinous synapses, characterize the iV-Cul neuropil. Axoaxonic synapses are conspicuously absent from the iV-Cul neuropil and glomeruli. The anterograde HRP labeling of spinal afferent axons that terminate in iV-Cul indicates that the terminals along these fibers are of the R type and that they are engaged predominantly in synaptic glomeruli. The results of this study indicate that the synaptic organization of iV-Cul is distinctly different from that of neighboring somatosensory nuclei, and supports the recent suggestion that this nucleus should be considered a separate precerebellar spinal relay nucleus in the lateral medulla.  相似文献   

19.
Summary The synaptic organization of the pars lateralis portion of the ventral lateral geniculate nucleus is similar to that of other thalamic nuclei. There are four types of synaptic knobs (RL, RS, F1, F2). RL knobs are large and irregularly shaped, contain round synaptic vesicles and make multiple asymmetrical junctions. They are found primarily in synaptic islands making contact with gemmules, spines, small dendrites, and other synaptic profiles containing pleiomorphic synaptic vesicles (F2). Smaller RS knobs contain round vesicles and make asymmetrical junctions with the same type of elements as RL knobs, with the exception of the F2 profiles, but are seldom found in synaptic islands. F1 knobs contain flattened synaptic vesicles and form symmetrical junctions with F2 knobs, gemmules, spines, and small-medium dendrites in synaptic islands, throughout the neuropil, and on the proximal dendrites and soma of the largest type of neuron. F2 knobs are irregularly shaped, contain pleiomorphic synaptic vesicles and make symmetrical junctions primarily with gemmules and spines in synaptic islands. They are postsynaptic to RL and F1 knobs. Occipital decortication indicates that cortical terminals are of the RS type. Bilateral enucleation indicates that retinal terminals are of both the RL and RS type. The large amount of geographic overlap of retinal and cortical terminals on gemmules, spines, and small dendrites found in the neuropil outside of synaptic islands logically would maximize axonal sprouting between these two sources.We would like to thank Mr. Peter Rossetti for his excellent technical assistance on a major portion of this project, Ms. Judith Strauss for photographic assistance, and Ms. Nancy Wood for typing. Supported by grants NS 10579, NS 08724, 5 S01 RR 05402, and 2 T01 GM 00326  相似文献   

20.
The type and distribution of neurokinin-1 (NK-1) receptor-expressing neurones were studied in young (14-day-old) rats' lumbar spinal cord using pre-embedding immunohistochemistry. The heaviest immunoreactivity was observed in the middle part and lateral fourth of lamina I where the great majority of immunoreactive perikarya represented fusiform and multipolar cells. In lamina II the middle and medial part showed moderate immunoreactivity, most of the cells resembled stalked cells. In lamina III the labelled perikarya were evenly distributed, while those in lamina IV accumulated mainly in the lateral part. In both laminae most of the labelled neurones represented central cells, the rest of them belonged to the antenna-type cells with long dorsally directed dendrites penetrating the superficial laminae. The immunoreactivity in laminae V-VII was uniform and relatively weak. In lamina VIII the immunopositive perikarya were encountered only rarely while in lamina IX virtually all motoneurones showed weak immunoreactivity. Lamina X contained small, multipolar and fusiform labelled perikarya. In conclusion, we found that the general appearance of the NK-1 receptor immunostaining and the major type of NK-I receptor-expressing neurones were similar to that found previously in adult spinal cord. Using the same method as Brown and colleagues the number of labelled NK- 1 receptor immunoreactive cells was similar in young and adult animals except lamina I where the number of immunoreactive neurones was twice that in adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号