首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization.  相似文献   

2.
1.  Maximal oxygen consumption rates ( [(V)\dot]\textO\text2 \dot V_{{\text{O}}_{\text{2}} } max; units, ml/g·h) were determined for four species of amphibians representing four families with habitat preferences varying from aquatic to terrestrial. Measured [(V)\dot]\textO\text2 \dot V_{{\text{O}}_{\text{2}} } max were:Xenopus laevis (aquatic), 1.33±0.16;Rana pipiens (semi-terrestrial), 0.54±0.10;Bufo cognatus (terrestrial), 1.91±0.26; andScaphiopus couchii (terrestrial), 1.91±0.26.
2.  In order to assess possible cardiovascular bases for these interspecific differences, heart rate increments (differences between resting and active heart rates) and ventricle weights were measured to evaluate differential cardiac outputs. In order to assess possible differential blood oxygen capacities, hematocrits and hemoglobin concentrations were measured. Blood volumes were determined to assess total blood oxygen storage capacities.
3.  Ventricle weights were statisticaly significantly different (p<0.01) between=" all=">B. cognatus>S. couchii>X. laevis>R. pipiens. These differences were closely positively correlated with the maximal metabolic rates of the species (Fig. 3a).
4.  There were no differences in heart rate increments between the four species (Fig. 2).
5.  Blood oxygen capacities were directly correlated with hemoglobin concentrations (Fig. 1). There were no interspecific differences in the amounts of oxygen bound per gram of hemoglobin (1.3 ml O2/g Hb). Blood oxygen capacities were significantly different in the following sequence;X. laevis >S. couchii andB. cognatus>R. pipiens.
6.  X. laevis had statistically significantly greater hematocrits than did the other three species.R. pipiens had significantly lower mean corpuscular hemoglobin concentrations.
7.  Blood volumes were statistically significantly different between all species examined,S. couchii>B. cognatus>X. laevis>R. pipiens.
8.  It is suggested that greater maximal oxygen consumption rates in anurans are correlated with 1) increased cardiac outputs based upon increased stroke volumes, 2) increased blood oxygen capacities due to either increased mean corpuscular hemoglobin concentration or increased hematocrit. Increased selective pressure for aerobic metabolism is also closely positively correlated with maximal blood oxygen storage capabilities.
  相似文献   

3.
Evolutionary processes are known to influence contemporary patterns of biological diversity, yet disentangling the effects of current and historical drivers of biodiversity patterns remain challenging. We use spatial analyses of community dissimilarity to generate hypotheses about the current and historical processes underlying patterns of beta diversity in anuran species in the Brazilian Cerrado. Specifically, we use a generalized dissimilarity modeling (GDM) approach to model compositional dissimilarity of anuran species and endemics as a function of geographic separation and local (within‐Cerrado) environmental conditions. To gain insight about potential historical processes, we incorporate information from biomes adjacent to the Cerrado to investigate whether environmental conditions in neighboring areas can help explain patterns of beta diversity within the Cerrado. Patterns of anuran beta diversity of both endemics and all species in the Cerrado appear to be strongly influenced by local environmental gradients, with elevation as one of the most important variables in all models. However, in models using endemic species only, environmental conditions of adjacent biomes were related to beta‐diversity patterns, and more strongly so, than to total species models. These results suggest that phylogenetic niche conservatism within species groups that invaded the Cerrado from adjacent biomes may cause these species to be restricted to environmental conditions within the Cerrado that are most similar to the conditions in the adjacent biome where they originated. Time‐calibrated phylogenies of Cerrado endemics and studies of ancestral and current ranges of Cerrado species are needed to test this hypothesis.  相似文献   

4.
Water salinity represents an environmental stress for many species. Amphibians are particularly sensitive because they are generally poor osmoregulators, and most species are completely absent from brackish and saline environments. We experimentally examined the effect of different salinity levels on larvae of the toad Bufo calamita L., a species that occupies freshwater ponds but can also breed in brackish ponds. Two independent experiments are reported here. In both experiments, tadpoles under saline conditions (ranging between 85 and 200 mOsm) showed a slower developmental rate, metamorphosing between 4 and 9 d later than the controls. Bufo calamita tadpoles reared in brackish water increased their osmolality and solute concentration (mainly sodium and chloride), decreased their levels of glucose, and decreased the total protein content, all measured from whole-animal extracts. Although most larval anurans are strictly ammoniotelic until the completion of metamorphosis, a few species exposed to dehydrating environments have evolved the ability to use urea as an osmolyte during the larval phase. The data presented here reveal that although B. calamita seems to be yet another exception to the rule of larval strict ammoniotelism, the tadpoles are not able to use urea as an osmolyte and rely on sodium-chloride balance instead. Preliminary immunoassays of thyroid hormone content suggest a possible decrease in hormone levels induced in water salinity conditions that correlate with a decreased developmental rate.  相似文献   

5.
6.
7.
8.
Ecological correlates of endozoochory by herbivores   总被引:15,自引:0,他引:15  
  相似文献   

9.
10.
Perspectives on molecular and cellular exercise physiology   总被引:3,自引:0,他引:3  
  相似文献   

11.
The collection of primary data in laboratory classes enhances undergraduate practical and critical thinking skills. The present article describes the use of a lecture program, running in parallel with a series of linked practical classes, that emphasizes classical or standard concepts in exercise physiology. The academic and practical program ran under the title of a particular year II module named Sports Performance: Physiology and Assessment, and results are presented over a 3-yr period (2004-2006), based on an undergraduate population of 31 men and 34 women. The module compared laboratory-based indexes of endurance (e.g., ventilatory threshold and exercise economy) and high-intensity exercise (e.g., anaerobic power), respectively, with measures of human performance (based on 20-m shuttle run tests). The specific experimental protocols reinforced the lecture content to improve student understanding of the physiological and metabolic responses (and later adaptations) to exercise. In the present study, the strongest relationship with endurance performance was the treadmill velocity at maximal aerobic power (r = +0.88, P < 0.01, n = 51); in contrast, the strongest relationship with high-intensity exercise performance was the mean power output (in W/kg) measured during a 30-s all-out cycle ergometer sprint (r = +0.80, P < 0.01, n = 48). In class student data analysis improved undergraduate indepth or critical thinking during seminars and enhanced computer and data presentation skills. The endurance-based laboratories are particularly useful for examining the underlying scientific principles that determine aerobic performance but could equally well be adapted to investigate other topics, e.g., differences in the exercise response between men and women.  相似文献   

12.
Extra-group paternity (EGP) can form an important part of the mating system in birds and mammals. However, our present understanding of its extent and ecology comes primarily from birds. Here, we use data from 26 species and phylogenetic comparative methods to explore interspecific variation in EGP in mammals and test prominent ecological hypotheses for this variation. We found extensive EGP (46% of species showed more than 20% EGP), indicating that EGP is likely to play an important role in the mating system and the dynamics of sexual selection in mammals. Variation in EGP was most closely correlated with the length of the mating season. As the length of the mating season increased, EGP declined, suggesting that it is increasingly difficult for males to monopolize their social mates when mating seasons are short and overlap among females in oestrus is likely to be high. EGP was secondarily correlated with the number of females in a breeding group, consistent with the idea that as female clustering increases, males are less able to monopolize individual females. Finally, EGP was not related to social mating system, suggesting that the opportunities for the extra-group fertilizations and the payoffs involved do not consistently vary with social mating system.  相似文献   

13.
Common student misconceptions in exercise physiology and biochemistry   总被引:1,自引:0,他引:1  
The present study represents a preliminary investigation designed to identify common misconceptions in students' understanding of physiological and biochemical topics within the academic domain of sport and exercise sciences. A specifically designed misconception inventory (consisting of 10 multiple-choice questions) was administered to a cohort of level 1, 2, and 3 undergraduate students enrolled in physiology and biochemistry-related modules of the BSc Sport Science degree at the authors' institute. Of the 10 misconceptions proposed by the authors, 9 misconceptions were confirmed. Of these nine misconceptions, only one misconception appeared to have been alleviated by the current teaching strategy employed during the progression from level 1 to 3 study. The remaining eight misconceptions prevailed throughout the course of the degree program, suggesting that students enter and leave university with the same misconceptions in certain areas of exercise physiology and biochemistry. The possible origins of these misconceptions are discussed, as are potential teaching strategies to prevent and/or remediate them for future years.  相似文献   

14.
15.
The principles of bone biology and physiology permeate all subspecialty practices in plastic and reconstructive surgery, from hand surgery to aesthetic surgery. Despite its importance in our practices, these topics rarely surface within textbooks, literature reviews, or residency curricula. The authors present the second portion of a two-part review of the important concepts of bone biology and bone physiology relevant to plastic surgery, in an effort to ameliorate this educational gap.  相似文献   

16.
The emergence of technology has been suggested to coincide with scarcity of staple resources that led to innovations in the form of tool-assisted strategies to diversify or augment typical diets. We examined seasonal patterns of several types of tool use exhibited by a chimpanzee (Pan troglodytes) population residing in central Africa, to determine whether their technical skills provided access to fallback resources when preferred food items were scarce. Chimpanzees in the Goualougo Triangle exhibit a diverse repertoire of tool behaviours, many of which are exhibited throughout the year. Further, they have developed specific tool sets to overcome the issues of accessibility to particular food items. Our conclusion is that these chimpanzees use a sophisticated tool technology to cope with seasonal changes in relative food abundance and gain access to high-quality foods. Subgroup sizes were smaller in tool using contexts than other foraging contexts, suggesting that the size of the social group may not be as important in promoting complex tool traditions as the frequency and type of social interactions. Further, reports from other populations and species showed that tool use may occur more often in response to ecological opportunities and relative profitability of foraging techniques than scarcity of resources.  相似文献   

17.
The infraorbital foramen (IOF) transmits the infraorbital nerve (ION) to specialized sensory cells (mechanoreceptors) in the maxillary region. The size of the IOF has been used in numerous paleoecological interpretations of the fossil record. However, these interpretations have been applied without an explicit analysis of the relationship between ecological variables and the IOF. ION and IOF cross‐sectional area show a strong positive correlation. As a result, IOF area can be a proxy for ION area, and it is hypothesized that IOF area may be a good measure for maxillary somatosensory acuity. Differences in diet, substrate preference, and/or activity pattern have been shown to correlate with differences in maxillary somatosensory acuity among mammals. This study examines how IOF area covaries with different ecological variables. IOF area was measured for 89 primate species. Ecological profiles were also created for each species and used to evaluate interspecific variation in relative IOF area within each ecological category. The results show a significant relationship between relative IOF area and diet, but not substrate preference or activity pattern. Frugivores have significantly larger relative IOFs than either folivores or insectivores, but the relative IOFs of folivores and insectivores do not differ significantly from one another. These results partially support the hypothesis that maxillary mechanoreception is a critical sensory cue for primates within a feeding context. Results for this study suggest the IOF can be used as an informative character in some paleoecological interpretations of the primate fossil record. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
Ecological correlates of feather mite prevalence in passerines   总被引:1,自引:0,他引:1  
The relationship between host ecology and feather mite prevalence was analysed in birds. Feather mites are small arthropods (fam. Pterolichoidea and Analgoidea) commonly found on birds, although the nature of their interactions with the host (commensalism, mutualism or parasitism), still remains unclear. Host body mass and migratory behaviour were unrelated to feather mite prevalence. Contrary to expectation, there was no differences in mite prevalence between colonial and solitary-breeding species. However, winter sociality was associated with increased prevalence, suggesting that winter and breeding sociality affected the distribution patterns of feather mites in different ways. Plumage dichromatism was negatively correlated with feather mite prevalence, a result that is opposite to that predicted by the Hamilton and Zuk hypothesis for the evolution of host secondary sexual characteristics in relation to parasitism.  相似文献   

20.
Himalayan musk deer (Moschus leucogaster; hereafter musk deer) are endangered as a result of poaching and habitat loss. The species is nocturnal, crepuscular, and elusive, making direct observation of habitat use and behavior difficult. However, musk deer establish and repeatedly use the same latrines for defecation. To quantify musk deer habitat correlates, we used observational spatial data based on presence–absence of musk deer latrines, as well as a range of fine spatial‐scale ecological covariates. To determine presence–absence of musk deer, we exhaustively searched randomly selected forest trails using a 20‐m belt transect in different study sites within the Neshyang Valley in the Annapurna Conservation Area. In a subsequent way, study sites were classified as habitat or nonhabitat for musk deer. A total of 252 plots, 20 × 20 m, were systematically established every 100 m along 51 transects (each ~0.5 km long) laid out at different elevations to record a range of ecological habitat variables. We used mixed‐effect models and principal component analysis to characterize relationships between deer presence–absence data and habitat variables. We confirmed musk deer use latrines in forests located at higher elevations (3,200–4,200 m) throughout multiple seasons and years. Himalayan birch (Betula utilis) dominated forest, mixed Himalayan fir (Abies spectabilis), and birch forest were preferred over pure Himalayan fir and blue pine (Pinus wallichiana) forest. Greater crown cover and shrub diversity were associated with the presence of musk deer whereas tree height, diameter, and diversity were weakly correlated. Topographical attributes including aspect, elevation, distance to water source, and slope were also discriminated by musk deer. Over‐ and understory forest management can be used to protect forests likely to have musk deer as predicted by the models to ensure long‐term conservation of this rare deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号