首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li HY  Yang L  Liu W  Zuo J 《生理学报》2011,63(1):69-74
本文旨在探讨促存活信号通路Raf/Mek/Erk1/2是否参与了葡萄糖调节蛋白75(glucose-regulated protein75,GRP75)对缺糖诱导的细胞凋亡的抑制作用。GRP75过表达的PC12细胞给予Raf/Mek/Erk1/2通路抑制剂U0126预处理之后,无糖培养6、12和24h,同时以DMSO预处理的GRP75过表达PC12细胞组为对照。Western blot检测Erk1/2的磷酸化和表达水平,MTT实验检测细胞存活率,Hoechst 33258染色观察凋亡细胞核的形态学改变,流式细胞仪检测细胞亚二倍体峰,免疫荧光检测细胞色素c(cytochrome c,Cytc)向胞浆的弥散情况。结果显示:U0126在没有影响Erk1/2表达水平的前提下,阻断了GRP75对Erk1/2磷酸化水平的维持;U0126处理组的凋亡率明显高于对照组;U0126处理组Cytc从线粒体向胞浆释放的时间明显早于对照组,同时Cytc向胞浆的弥散程度大于对照组。以上结果提示,U0126通过抑制Erk1/2磷酸化,阻断了缺糖状态下GRP75对Cytc释放和细胞凋亡的抑制作用,这表明GRP75是通过Raf/Mek/Er...  相似文献   

2.
Glucose metabolism plays a pivotal role in many physiological and pathological conditions. To investigate the effect of hypoglycemia (obtained by glucose deprivation) on PC12 cell line, we analyzed the cell viability, mitochondrial function (assessed by MTT reduction, cellular ATP level, mitochondrial transmembrane potential), and the level of reactive oxygen species (ROS) after glucose deprivation (GD). Upon exposure to GD, ROS level increased and MTT reduction decreased immediately, intracellular ATP level increased in the first 3 hours, followed by progressive decrease till the end of GD treatment, and the mitochondrial transmembrane potential (ΔΨm) dropped after 6 hours. Both necrosis and apoptosis occurred apparently after 24 hours which was determined by nuclei staining with propidium iodide(PI) and Hoechst 33342. These data suggested that cytotoxity of GD is mainly due to ROS accumulation and ATP depletion in PC12 cells.  相似文献   

3.
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER–mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER–mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER–mitochondrial interaction leading to apoptosis in pancreatic islet cells.  相似文献   

4.
Oxidative stress, caused by the over production of reactive oxygen species (ROS), has been shown to contribute to cell damage associated with neurotrauma and neurodegenerative diseases. ROS mediates cell damage either through direct oxidation of lipids, proteins and DNA or by acting as signaling molecules to trigger cellular apoptotic pathways. The 78 kDa glucose-regulated protein (GRP78) is an ER chaperone that has been suggested to protect cells against ROS-induced damage. However, the protective mechanism of GRP78 remains unclear. In this study, we used C6 glioma cells transiently overexpressing GRP78 to investigate the protective effect of GRP78 against oxidative stress (hydrogen peroxide)-induced injury. Our results showed that the overexpression of GRP78 significantly protected cells from ROS-induced cell damage when compared to non-GRP78 overexpressing cells, which was most likely due to GRP78-overexpressing cells having higher levels of glutathione (GSH) and NAD(P)H:quinone oxidoreductase 1 (NQO1), two antioxidants that protect cells against oxidative stress. Although hydrogen peroxide treatment increased lipid peroxidation in non-GRP78 overexpressing cells, this increase was significantly reduced in GRP78-overexpressing cells. Overall, these results indicate that GRP78 plays an important role in protecting glial cells against oxidative stress via regulating the expression of GSH and NQO1.  相似文献   

5.
Glucose-regulated protein 75 (Grp75) is an important molecular chaperone that belongs to the heat shock protein 70 family and resides predominantly in mitochondria. Grp75 can protect cells from glucose deprivation (GD) injury. However, the molecular mechanisms by which it carries out this function are unknown. Here we report that Grp75 could delay the release of cytochrome c and reduce apoptosis induced by GD, and we also found that Grp75 could decrease Bax/Bcl-2 gene expression ratio and inhibit the conformational change of Bax during this process. In conclusion, these findings suggested that Grp75 overexpression was able to inhibit apoptosis induced by GD. Grp75 inhibited Bax conformational change to delay the release of cytochrome c, thus providing protection to PC12 cell which was used primarily as a neuron model against GD toxicity.  相似文献   

6.
Background: Control of ER-mitochondrial Ca2+ fluxes is a critical checkpoint to determine cell fate under stress. The 75-kDa glucose-regulated protein (GRP75) is a key tether protein facilitating mitochondria-associated ER membrane (MAM) formation through the IP3R-GRP75-VDAC1 complex. Although GRP75 contributes to cisplatin (CP)-resistance of ovarian cancer (OC), the underlying mechanisms are not clear.Methods: CP-resistant and -sensitive OC cell lines with GRP75 stable modulation were established. Confocal, PLA, co-IP, and TEM analysis were utilized to detect MAM integrity. Live cell Ca2+ imaging, intracellular ATP, ROS, and NAD+ assays were utilized to investigate ER-to-mitochondrial Ca2+ transfer and mitochondrial bioenergetics. Western blot, flow cytometry, CCK-8, Δψm, and mPTP assays were utilized to examine apoptotic cell death. Bioinformatics, patient''s specimens, and immunohistochemistry were conducted to obtain the clinical relevance for GRP75-facilitated MAM formation.Results: GRP75-faciliated MAM formation was enriched in CP-resistant OC cells. CP-exposure only increased MAM formation in CP-sensitive OC cells, and enrichment of GRP75 and VDAC1 at MAMs is indispensable to CP-resistance. Diminishing MAM integrity by GRP75-deficiency reduced ER-to-mitochondria Ca2+ transfer, accelerated CP-induced mitochondrial dysfunction, provoked catastrophic ROS, and enhanced CP-triggered apoptotic cell death in OC cells. Clinical investigations confirmed the enrichment of GRP75-faciliated MAM formation in relapsed OC patients, and such enrichment was associated with the CP-resistance phenotype.Conclusion: GRP75-overexpression confers CP-resistance by distinctively managing MAM-facilitated Ca2+ fluxes and the pro-survival ROS signal, whereas GRP75-deficiency induces cell death via bioenergetic crisis and apoptotic ROS accumulation in OC cells. Our results show that GRP75-faciliated MAM formation is a potential target to overcome CP-resistance of OC.  相似文献   

7.
Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen–glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.  相似文献   

8.
The selective autophagy of damaged mitochondria is called mitophagy. Mitochondrial dysfunction, mitophagy, and apoptosis have been suggested to be interrelated in various human lung carcinomas. Leucine zipper EF-hand-containing transmembrane protein-1 (LETM1) was cloned in an attempt to identify candidate genes for Wolf–Hirschhorn syndrome. LETM1 plays a role in mitochondrial morphology, ion homeostasis, and cell viability. LETM1 has also been shown to be overexpressed in different human cancer tissues, including lung cancer. In the current study, we have provided clear evidence that LETM1 acts as an anchoring protein for the mitochondria-associated ER membrane (MAM). Fragmented mitochondria have been found in lung cancer cells with LETM1 overexpression. In addition, a reduction of mitochondrial membrane potential and significant accumulation of microtubule-associated protein 1 A/1B-light chain 3 punctate, which localizes with Red-Mito, was found in LETM1-overexpressed cells, suggesting that mitophagy is upregulated in these cells. Interestingly, glucose-regulated protein 78 kDa (GRP78; an ER chaperon protein) and glucose-regulated protein 75 kDa (GRP75) were posited to interact with LETM1 in the immunoprecipitated LETM1 of H460 cells. This interaction was enhanced in cells treated with carbonyl cyanide m-chlorophenylhydrazone, a chemical mitophagy inducer. Treatment of cells with honokiol (a GRP78 inhibitor) blocked LETM1-mediated mitophagy, and CRISPR/Cas9-mediated GRP75 knockout inhibited LETM1-induced autophagy. Thus, GRP78 interacts with LETM1. Taken together, these observations support the notion that the complex formation of LETM1/GRP75/GRP78 might be an important step in MAM formation and mitophagy, thus regulating mitochondrial quality control in lung cancer.Subject terms: Non-small-cell lung cancer, Mitophagy  相似文献   

9.
目的:研究RUNX1在PC12细胞氧糖剥夺模型中的表达及其对PC12细胞的保护作用,并探讨其相关机制。方法:体外培养PC12细胞并构建氧糖剥夺模型,将细胞分为对照组、氧糖剥夺组、RUNX1 si RNA处理组、si RNA对照处理组(sicontrol)、pc DNA3.1-RUNX1处理组(pc RUNX1)和pc DNA3.1对照处理组(pc DNA 3.1)。q RT-PCR和western blot检测RUNX1、磷酸化Akt(p-Akt)和总Akt(t-Akt)表达水平;MTT法检测细胞存活率;Annexin V-FITC/PI双染法检测细胞凋亡。结果:与对照组比较,RUNX1在PC12细胞氧糖剥夺模型中表达水平显著升高;沉默RUNX1可下调PC12细胞的存活率,促进细胞的凋亡,有效抑制p-Akt蛋白表达,而过表达RUNX1显著提高细胞存活率,抑制细胞凋亡,并上调p-Akt蛋白表达;此外,PI3K/Akt通路抑制剂LY294002明显抑制RUNX1过表达对细胞存活率的促进作用和对细胞凋亡的抑制作用。结论:RUNX1可通过PI3K/Akt信号通路保护OGD对PC12细胞的损伤作用。  相似文献   

10.
Autophagy is closely associated with cerebral ischaemia/reperfusion injury, but the underlying mechanisms are unknown. We investigated whether Spautin-1 ameliorates cerebral ischaemia/reperfusion injury by inhibiting autophagy and whether its derived pyroptosis is involved in this process. We explored the mechanism of Spautin-1 in cerebral ischaemia/reperfusion. To answer these questions, healthy male Sprague-Dawley rats were exposed to middle cerebral artery occlusion for 60 minutes followed by reperfusion for 24 hours. We found that cerebral ischaemia/reperfusion increased the expression levels of autophagy and pyroptosis-related proteins. Treatment with Spautin-1 reduced the infarct size and water content and restored some neurological functions. In vitro experiments were performed using oxygen-glucose deprivation/reoxygenation to model PC12 cells. The results showed that PC12 cells showed a significant decrease in cell viability and a significant increase in ROS and autophagy levels. Spautin-1 treatment reduced autophagy and ROS accumulation and attenuated NLRP3 inflammasome-dependent pyroptosis. However, these beneficial effects were greatly blocked by USP13 overexpression, which significantly counteracted the inhibition of autophagy and NLRP3 inflammasome-dependent ferroptosis by Spautin-1. Together, these results suggest that Spautin-1 may ameliorate cerebral ischaemia-reperfusion injury via the autophagy/pyroptosis pathway. Thus, inhibition of autophagy may be considered as a promising therapeutic approach for cerebral ischaemia-reperfusion injury.  相似文献   

11.
12.
13.
ABSTRACT

This study was undertaken to investigate the neuroprotective effect of an ethanolic extract of Mori Cortex radicis (MCR) against high glucose (HG)-induced oxidative damage in PC12 cells. Cell cytotoxicity was examined using MTT and lactate dehydrogenase assays. To examine the antioxidative effects, intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and the activities of antioxidant enzymes were measured. The expressions of apoptosis-associated proteins were assessed. MCR was found to increase the viabilities of HG-induced PC12 cells and to inhibit ROS and MDA production and to promote antioxidative enzyme activities. Furthermore, MCR reduced apoptosis by upregulating p-Akt and Bcl-2/Bax ratio and reducing cytochrome c level. The main flavonoids in MCR were identified by HPLC to be kuwanon G and morusin. These results suggest the antioxidative effects of MCR protect against HG-induced oxidative stress and that MCR has potential therapeutic use for the prevention and treatment of diabetic neuro-degeneration.  相似文献   

14.
Apoptotic cell death has been observed in many in vivo and in vitro models of ischemia. However, the molecular pathways involved in ischemia-induced apoptosis remain unclear. We have examined the role of Bcl-2 family of proteins in mediating apoptosis of PC12 cells exposed to the conditions of oxygen and glucose deprivation (OGD) or OGD followed by restoration of oxygen and glucose (OGD-restoration, OGD-R). OGD decreased mitochondrial membrane potential and induced necrosis of PC12 cells, which were both prevented by the overexpression of Bcl-2 proteins. OGD-R caused apoptotic cell death, induced cytochrome C release from mitochondria and caspase-3 activation, decreased mitochondrial membrane potential, and increased levels of pro-apoptotic Bax translocated to the mitochondrial membrane, all of which were reversed by overexpression of Bcl-2. These results demonstrate that the cell death induced by OGD and OGD-R in PC12 cells is potentially mediated through the regulation of mitochondrial membrane potential by the Bcl-2 family of proteins. It also reveals the importance of developing therapeutic strategies for maintaining the mitochondrial membrane potential as a possible way of reducing necrotic and apoptotic cell death that occurs following an ischemic insult.  相似文献   

15.
Shimoke K  Kudo M  Ikeuchi T 《Life sciences》2003,73(5):581-593
Glucose-regulated protein 78 (GRP78)/Immunoglobulin binding protein (Bip) is a chaperone which functions to protect cells from endoplasmic reticulum (ER) stress. GRP78/Bip is expressed following ER stress induced by thapsigargin, tunicamycin or chemical factors. However, the mechanism of progression of ER stress against stress factors is still obscure. We examined whether reactive oxygen species (ROS) were involved in GRP78/Bip expression and caspase-3 activity was induced in PC12 cells using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to produce ROS. We report that PC12 cells lost viability in the presence of MPTP for 24 hours as a partial effect of ROS. We also show that N-acetyl-L-cysteine diminished the MPTP-induced apoptosis with expunction of ROS. Furthermore, we observed that GRP78/Bip was not up-regulated and the caspase-3 activity was increased in the presence of MPTP. These results suggest that insubstantial ROS do not contribute to the ER stress-mediated cell death while caspase-3 is involved in ROS-promoted cell death in MPTP-treated cells.  相似文献   

16.
This study investigates the hypothesis that CuZn superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and the G(2)/M-checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell-cycle-phase distributions, and cyclin B1 expression. SOD1-overexpressing cells were radioresistant compared to wild-type (wt) and neo vector control (neo) cells. Irradiated wt and neo cells showed a significant increase (approximately twofold) in DHE fluorescence beginning at 2 days postirradiation, which remained elevated at 8 days postirradiation. Interestingly, the late accumulation of ROS was suppressed in irradiated SOD1-overexpressing cells. The increase in ROS levels was followed by a decrease in cell growth and viability and an increase in the percentage of cells with sub-G(1) DNA content. SOD1 overexpression enhanced radiation-induced G(2) accumulation within 24 h postirradiation, which was accompanied by a decrease in cyclin B1 mRNA and protein levels. These results support the hypothesis that long after radiation exposure a "metabolic redox response" regulates radiosensitivity of human glioma cells.  相似文献   

17.
18.
Subjecting myogenic H9c2 cells to transient energy deprivation leads to a caspase-independent death with typical features of necrosis. Here we show that the rupture of cytoplasmic membrane, the terminal event in necrosis, is shortly preceded by rapid depolarization of mitochondrial membranes. The rapid deenergization of mitochondria critically depended upon prior generation of reactive oxygen species (ROS) during ATP depletion stage. Accordingly, expression of catalase prevented mitochondrial depolarization and averted subsequent necrosis. Interestingly, trifluoperazine, a compound that protects cells from ischemic insults, prevented necrosis of H9c2 cells through inhibition of ROS production. Other factors that regulated the mitochondrial membrane depolarization and subsequent loss of plasma membrane integrity include a stress kinase JNK activated at early steps of recovery from ATP depletion, as well as an apoptotic inhibitory protein ARC. Accordingly, inhibition of JNK or overexpression of ARC prevented mitochondrial depolarization and rescued H9c2 cells from necrosis. ROS and JNK affected mitochondrial deenergization and necrosis independently of each other since inhibition of ROS production did not prevent activation of JNK, whereas inhibition of JNK did not suppress ROS accumulation. Therefore, JNK activation and ROS production represent two independent pathways that control mitochondrial depolarization and subsequent necrosis of cells subjected to transient energy deprivation. Overexpression of ARC, although preventing mitochondrial depolarization, did not affect either JNK activation or production of ROS. The major heat shock protein Hsp72 inhibited JNK-related steps of necrotic pathway but did not affect ROS accumulation. Interestingly, mitochondrial depolarization and subsequent necrosis can be suppressed by an Hsp72 mutant Hsp72DeltaEEVD, which lacks chaperone function but can efficiently suppress JNK activation. Thus, Hsp72 is directly implicated in a signaling pathway, which leads to necrotic death.  相似文献   

19.
20.
The aim of present study is to explore the cytoprotection of curcumin against 1-methyl-4-phenylpridinium ions (MPP+)-induced apoptosis and the molecular mechanisms underlying in PC12 cells. Our findings indicated that MPP+ significantly reduced the cell viability and induced apoptosis of PC12 cells. Curcumin protected PC12 cells against MPP+-induced cytotoxicity and apoptosis not only by inducing overexpression of Bcl-2, but also reducing the loss of mitochondrial membrane potential (MMP), an increase in intracellular reactive oxygen species (ROS) and overexpression of inducible nitric oxide synthase (iNOS). The selective iNOS inhibitor AG partly blocked MPP+-induced apoptosis of PC12 cells. The results of present study suggested that the cytoprotective effects of curcumin might be mediated, at least in part, by the Bcl-2-mitochondria-ROS-iNOS pathway. Because of its non-toxic property, curcumin could be further developed to treat the neurodegenerative diseases which are associated with oxidative stress, such as Parkinson’s disease (PD). J. Chen and X. Q. Tang are contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号