首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of microbial biofilms on surfaces of a wide range of materials being considered as candidates for use on the International Space Station was investigated. The materials included a fibre-reinforced polymeric composite, an adhesive sealant, a polyimide insulation foam, teflon cable insulation, titanium, and an aliphatic polyurethane coating. They were exposed to a natural mixed population of bacteria under controlled conditions of temperature and relative humidity (RH). Biofilms formed on the surfaces of the materials at a wide range of temperatures and RHs. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. The biocide, diiodomethyl-p-tolyl sulfone, impregnated in the polyurethane coating, was ineffective against microbial colonization and growth. Degradation of the polyurethane coatings was monitored with electrochemical impedance spectroscopy (EIS). The impedance spectra indicated that microbial degradation of the coating occurred in several stages. The initial decreases in impedance were due to the transport of water and solutes into the polymeric matrices. Further decreases were a result of polymer degradation by microorganisms. Our data showed that these candidate materials for space application are susceptible to biofilm formation and subsequent degradation. Our study suggests that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.  相似文献   

2.
Polyurethanes are polymeric plastics that were first used as substitutes for traditional polymers suspected to release volatile organic hazardous substances. The limitless conformations and formulations of polyurethanes enabled their use in a wide variety of applications. Because approximately 10 Mt of polyurethanes is produced each year, environmental concern over their considerable contribution to landfill waste accumulation appeared in the 1990s. To date, no recycling processes allow for the efficient reuse of polyurethane waste due to their high resistance to (a)biotic disturbances. To find alternatives to systematic accumulation or incineration of polyurethanes, a bibliographic analysis was performed on major scientific advances in the polyurethane (bio)degradation field to identify opportunities for the development of new technologies to recondition this material. Until polymers exhibiting oxo- or hydro-biodegradative traits are generated, conventional polyurethanes that are known to be only slightly biodegradable are of great concern. The research focused on polyurethane biodegradation highlights recent attempts to reprocess conventional industrial polyurethanes via microbial or enzymatic degradation. This review describes several wonderful opportunities for the establishment of new processes for polyurethane recycling. Meeting these new challenges could lead to the development of sustainable management processes involving polymer recycling or reuse as environmentally safe options for industries. The ability to upgrade polyurethane wastes to chemical compounds with a higher added value would be especially attractive.  相似文献   

3.
Fungal susceptibility of polyurethanes   总被引:4,自引:3,他引:4       下载免费PDF全文
One hundred laboratory-synthesized polyurethanes were tested by a mixed-culture petri dish method for susceptibility to fungus attack. Polyether polyurethanes were moderately to highly resistant to fungal attack, whereas all polyester polyurethanes tested were highly susceptible. The susceptibility of the polyethers was related to the number of adjacent methylene groups in the polymer chain. At least two such groups were required for appreciable attack to occur. The presence of side chains on the diol moiety of the polyurethane reduced susceptibility.  相似文献   

4.
The combined effects of lucerne (Medicago sativa L.) extract supplementation and ammonia treatment of rice straw (Oryza sativa, variety Thaibonnet) on the ruminal digestion of cell wall components were investigated in six continuous culture systems using a randomised complete block design. Data were fitted to second-order polynomial models. Untreated rice straw had higher contents of ash-free cell wall residues (CWR; 763 v. 687 g/kg dry matter (DM)) and non-cellulosic sugars (191 v. 166 g/kg DM) than treated rice straw. Ammoniation preferentially removed xylose, which resulted in a lower xylose-to-arabinose ratio (5.1 v. 5.8). In absence of lucerne supplementation and ammoniation, degradability coefficients were 0.54, 0.46, 0.58, 0.54, 0.42 and 0.60 for cellulose–glucose, xylose, arabinose, galactose, mannose and uronic acids, respectively. Both factors had significant effects on the microbial degradation of structural polysaccharides. With lucerne extract at an optimal level, ammonia treatment increased ash-free cell wall degradation by more than 10%. The degradability coefficients were increased by ammoniation without any significant interaction with lucerne extract, except for glucose, whose degradability was mostly influenced by lucerne extract in a curvilinear way. The comparison of regression coefficients in cell wall and CWR models suggested that ammoniation improved the degradabilities of xylose, galactose and mannose by partly solubilising the corresponding hemicelluloses and by improving the susceptibility of the remaining fraction to microbial attack, whereas it increased the degradability of arabinose only by favouring microbial attack.  相似文献   

5.
Mixed-function oxidation of Escherichia coli glutamine synthetase by ascorbate, oxygen, and iron has previously been shown to cause inactivation of the enzyme and enhanced susceptibility to proteolytic attack by a variety of proteases. One of these proteases, from rat liver, is a high molecular weight cysteine proteinase which does not degrade native glutamine synthetase at neutral pH. Although inactive, the oxidized glutamine synthetase preparations used in this study were only partially degraded by this proteinase. Some of the subunits were degraded to acid soluble products with no detectable intermediates; the remaining subunits had not become susceptible to proteolytic attack during the limited exposure to the ascorbate mixed-function oxidation system. Several mammalian enzymes which are known to be inactivated by mixed-function oxidation were tested as substrates for the proteinase. Native rabbit muscle enolase and pyruvate kinase were resistant to degradation, but their oxidatively inactivated forms were degraded. Oxidized phosphoglycerate kinase and creatine kinase were also preferentially degraded. Moreover, trypsin degraded oxidized preparations of all of these enzymes faster than control preparations. Oxidative inactivation of superoxide dismutase by hydrogen peroxide caused a slight increase in susceptibility to proteolytic attack, but the enzyme was still relatively resistant to degradation both by the cysteine proteinase and by trypsin. Although oxidation conditions may not have been optimal for demonstrating enhanced proteolytic susceptibility, the results do indicate that mixed-function oxidation can render some mammalian enzymes, as well as bacterial glutamine synthetase, susceptible to degradation. Mixed-function oxidation of these proteins may be a mechanism of marking them for intracellular turnover.  相似文献   

6.
This paper studies the biodegradation features of a novel blend of polyurethane acrylate-acrylated epoxidized soybean oil-based cross-linked polyurethane elastomers in the presence of the soft-rot fungus Chaetomium globosum. After the specimens were incubated at 28 °C for 90 and 130 days, the degree of fungal damage was measured by analysis of weight loss and mechanical properties. The biodegradation of the films was also evidenced by SEM and FTIR spectroscopic studies. After fungal attack, the FTIR spectra indicate a degradation of urethane and ester groups of the polyurethane and especially of the ester groups from the modified soybean oil part. The polyurethane blend films exposed to fungal attack suffered a loss in strength of up to 55% and a loss in elongation of up to 80%, depending on the content of acrylated epoxidized soybean oil. The biodegradation of the blends was also confirmed by SEM analyses. The biodegradation results show that samples with a high content of acrylated epoxidized soybean oil are more biodegradable than mere polyurethane acrylate. These biodegradable polymer blends present an optimum balance of physical properties and biodegradable properties with the potential for application as eco-friendly biomaterials.  相似文献   

7.
Mixed-function oxidation of Escherichia coli glutamine synthetase has previously been suggested to mark the enzyme for intracellular degradation, and in vitro studies have demonstrated that oxidation renders the enzyme susceptible to proteolytic attack. In this study, the susceptibility of glutamine synthetase to degradation by purified proteases has been compared with the rate of degradation after microinjection into hepatoma cells. Upon exposure to an ascorbate mixed-function oxidation system the enzyme rapidly loses most of its activity, but further oxidation is required to cause susceptibility to extensive proteolytic attack either by a high-molecular-weight liver cysteine proteinase or by trypsin. The rate of degradation of biosynthetically 14C-labeled native and oxidized glutamine synthetase preparations after injection into hepatoma cells parallels their susceptibility to proteolysis in vitro. Native enzyme preparations and enzyme oxidatively inactivated, but not susceptible to extensive degradation by purified proteases, had similar intracellular half-lives; however, oxidized enzyme preparations that were susceptible to proteolytic breakdown in vitro were degraded almost ten times faster than the native enzyme within the growing hepatoma cells. These results suggest that the same features of the oxidized enzyme that render it susceptible to proteolysis in vitro are also recognized by the intracellular degradation system. In addition, they show that loss of enzyme activity does not necessarily imply decreased metabolic stability.  相似文献   

8.
Biodeterioration of polymeric materials affects a wide range of industries. Formation of microbial biofilms on surfaces of materials being considered for use on the International Space Station was investigated. The materials included fiber-reinforced polymeric composites, adhesive sealant, polyimide insulation foam, Teflon cable insulation, and aliphatic polyurethane coatings. In simulation experiments, bacterial biofilms formed readily on the surfaces of the materials at a wide range of temperatures and relative humidity. The biofilm population was dominated by Pseudomonas aeruginosa, Ochrobactrum anthropi, Alcaligenes denitrificans, Xanthomonas maltophila, and Vibrio harveyi. Subsequently, degradation of polymeric materials was mostly a result of both fungal and bacterial colonization in sequence, and fungi may have advantages in the early phase of surface colonization over bacteria, especially on relatively resistant polymeric materials. These microorganisms are commonly detected on spacecraft on hardware and in the air. Furthermore, degradation of polymeric materials was documented with electrochemical impedance spectroscopy (EIS). The mechanisms of deterioration of polymeric materials were due to the availability of carbon source from the polymer, such as additives, plasticizers, and other impurities, in addition to the polymeric matrices. Microbial degradation of plasticizer phthalate esters is discussed for the microorganisms involved and the biochemical pathways of degradation. Current results suggest that candidate materials for use in space missions need to be carefully evaluated for their susceptibility to microbial biofilm formation and biodegradation.  相似文献   

9.
This paper intends to focus the attention to characteristic features of microbial lignin degradation from the phenomenological point of view. Six fundamental principles are discussed under special consideration of white-rot fungi. The necessity of mycelial growth and the formation, secretion, and extracellular action of peroxidases are main requirements for a successful microbial attack on polymeric lignin.  相似文献   

10.
In microbial fermentation systems for waste disposal and plant biomass conversions, the primary substrates are often particulate in nature, as they also are in natural microbial habitats such as the rumen. In modelling the microbial activities of such systems the particulate nature of the substrates is often ignored, or only mentioned: the degradation of particles as such is not considered. For complete modelling, the shape and size of the particles should be taken into consideration. In this paper, the fate of various shapes of particles, degraded in various ways compatible with microbial attack, is considered.  相似文献   

11.
A rapid soil burial method for assessing the susceptibility of polyurethanes to biodeterioration was developed. The time of the test was reduced by prestressing the polyurethanes. The degree of deterioration was measured by following changes in the appearance of the polyurethanes and in selected physical properties. It was found that pre-stressing produced significant reductions in the tensile strength of a known susceptible polyurethane after burial in soil for 2 weeks. The reduction was greater than that found with unstressed polyurethanes buried for 26 weeks in active soil. Changes in tensile strength were less after burial for 4 weeks in sterile soil than after burial in active soil for the same period. The results suggest that deterioration of polyurethane during soil burial is a result of both chemical and microbial action.  相似文献   

12.
塑料广泛应用于人类的生活中,其中约80%的塑料垃圾被填埋,最终成为陆地和海洋垃圾。由于管理与处置不善,这些废弃物造成了巨大的环境污染,目前回收再利用是较好的处置方式,但对某些塑料废弃物并没有妥善的处置方式。生物降解作为环境友好的处置方式,具有巨大的应用潜力。本文对聚对苯二甲酸乙二醇酯、聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯和聚氨酯这6种常用塑料的降解微生物及生物降解机制进行了总结,对目前微生物降解塑料存在的问题进行了分析,并提出了促进微生物降解塑料应用的途径,为生物降解塑料菌株和降解酶的开发应用、降解机制研究提供理论参考。  相似文献   

13.
Recent studies suggest that magnetic susceptibility (MS) measurements can play an important role in identifying zones where microbial-mediated iron mineral transformations are occurring. Here we investigated the microbial community variations within zones of elevated MS in a petroleum hydrocarbon-contaminated aquifer near Bemidji, Minnesota, USA. Our main objective was to 1) identify the key microbial populations that may play a role in hydrocarbon degradation, 2) analyze which microbial populations could be connected to the elevated MS and 3) explore the use of non-destructive geophysical techniques as a tool to guide microbial sampling. Clone libraries based on the 16S rRNA gene revealed the presence of iron-reducing β-Proteobacteria in the vadose zone, whereas the free petroleum phase on the water table was characterized by a methanogenic consortium, in which the syntrophic δ-proteobacterium Smithella and the hydrogenotrophic Methanoregula predominated. Nonmetric multidimensional scaling (NMDS) found a close relationship between elevated MS values and the methanogenic hydrocarbon-degrading consortium. Our results suggest that magnetic susceptibility measurements can guide microbiologists to zones of active microbial biodegradation in aged petroleum spills.  相似文献   

14.
Gu X  Wu J  Mather PT 《Biomacromolecules》2011,12(8):3066-3077
In this Article, we studied the enzymatic hydrolytic biodegradation behavior of a novel multiblock thermoplastic polyurethane (TPU) system, which incorporates polyhedral oligomeric silsesquioxane (POSS) into linear biodegradable thermoplastic polyurethanes containing poly(ε-caproactone) (PCL) and polyethylene glycol (PEG) blocks. The biodegradation behavior of POSS-PCL-PEG TPUs was characterized by proton nuclear magnetic resonance spectroscopy ((1)H NMR), differential scanning calorimetry (DSC), tensile tests, scanning electron microscopy (SEM), and wavelength dispersive X-ray spectrometry (WDS) after enduring 22-day accelerated enzymatic hydrolytic degradation tests. POSS incorporation significantly suppressed in vitro enzymatic hydrolytic degradation of PCL-PEG-based multiblock TPUs by a surface passivation mechanism. WDS observations revealed that the covalently bonded POSS moieties developed a near-continuous and robust POSS-layer after initial degradation, which prevented ester bonds of PCL from enzymatic attack, thereby inhibiting further degradation. These striking results provide a new strategy to fabricate the polyester-based biostable thermoplastic polyurethanes (TPUs) of potential use in long-term surgical implants.  相似文献   

15.
Over the past 30 years, research on the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) has resulted in the isolation of numerous genera of bacteria, fungi and algae capable of degrading low molecular weight PAHs (compounds containing three or less fused benzene rings). High molecular weight PAHs (compounds containing four or more fused benzene rings) are generally recalcitrant to microbial attack, although some fungi and algae are capable of transforming these compounds. Until recently, only a few genera of bacteria have been isolated with the ability to utilise four-ring PAHs as sole carbon and energy sources while cometabolism of five-ring compounds has been reported. The focuss of this review is on the high molecular weight PAH benzo[a]pyrene (BaP). There is concern about the presence of BaP in the environment because of its carcinogenicity, teratogenicity and toxicity. BaP has been observed to accumulate in marine organisms and plants which could indirectly cause human exposure through food consumption. This review provides an outline of the occurrence of BaP in the environment and the ability of bacteria, fungi and algae to degrade the compound, including pathways for BaP degradation by these organisms. In addition, approaches for improving microbial degradation of BaP are discussed.  相似文献   

16.
In this report, a polyester polyurethane (PU) degrading bacterium, designated as strain MZA-85, was isolated from soil through enrichment. The bacterium was identified through 16S rRNA gene sequencing; it was completely matched with Pseudomonas aeruginosa type strain. The degradation of PU film pieces by P. aeruginosa strain MZA-85 was investigated by scanning electron microscopy (SEM), Fourier transformed infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM micrographs of PU film pieces, treated with strain MZA-85, revealed changes in the surface morphology. FTIR spectrum showed increase in organic acid functionality and corresponding decrease in ester functional group. GPC results revealed increase in polydispersity, which shows that long chains of polyurethane polymer are cleaved into shorter chains by microbial action. The bacterium was found to produce cell associated esterases based on p-Nitrophenyl acetate (pNPA) hydrolysis assay. 1,4-Butanediol and adipic acid monomers were detected by gas chromatography–mass spectrometry (GC–MS), which were produced as a result of hydrolysis of ester linkages in PU by cell bound esterases. Strain MZA-85 not only depolymerized PU but also mineralized it into CO2 and H2O, as indicated by increase in cells growth in the presence of degradation products as well as detection of CO2 evolution through Sturm test. From the results presented above, it is finally concluded that P. aeruginosa strain MZA-85, as well as its enzymes, can be applied in the process of biochemical monomerization for the pure monomers recycling.  相似文献   

17.
Interferon type I responses in primary and secondary infections   总被引:1,自引:0,他引:1  
The mammalian host responds to a microbial infection with a rapid innate immune reaction that is dominated by type I interferon (IFN-I) release. Most cells of vertebrates can respond to microbial attack with IFN-I production, but the cell type responsible for most of the systemic IFN-I release is thought to be plasmacytoid dendritic cells (pDCs). Besides its anti-microbial and especially anti-viral properties IFN-I also exerts a regulatory role on many facets of the sequential adaptive immune response. One of these is being the recently described partial, systemic activation of the vast majority of B and T lymphocytes in mice, irrespective of antigen reactivity. The biological significance of this partial activation of lymphocytes is at present speculative. Secondary infections occurring within a short time span of a primary infection fail to elicit a similar lymphocyte activation response due to a refractory period in systemic IFN-I production. This period of exhaustion in IFN-I responses is associated with an increased susceptibility of the host to secondary infections. The latter correlates with well-established clinical observations of heightened susceptibility of patients to secondary microbial infections after viral episodes.  相似文献   

18.
Biodegradation of microbial and synthetic polyesters by fungi   总被引:5,自引:0,他引:5  
A variety of biodegradable polyesters have been developed in order to obtain useful biomaterials and to reduce the impact of environmental pollution caused by the large-scale accumulation of non-degradable waste plastics. Polyhydroxyalkanoates, poly(epsilon-caprolactone), poly( l-lactide), and both aliphatic and aromatic polyalkylene dicarboxylic acids are examples of biodegradable polyesters. In general, most aliphatic polyesters are readily mineralized by a number of aerobic and anaerobic microorganisms that are widely distributed in nature. However, aromatic polyesters are more resistant to microbial attack than aliphatic polyesters. The fungal biomass in soils generally exceeds the bacterial biomass and thus it is likely that fungi may play a considerable role in degrading polyesters, just as they predominantly perform the decomposition of organic matter in the soil ecosystem. However, in contrast to bacterial polyester degradation, which has been extensively investigated, the microbiological and environmental aspects of fungal degradation of polyesters are unclear. This review reports recent advances in our knowledge of the fungal degradation of microbial and synthetic polyesters and discusses the ecological importance and contribution of fungi in the biological recycling of waste polymeric materials in the biosphere.  相似文献   

19.
Misfolded proteins undergo a preferent degradation ruled by the housekeeping bacterial proteolytic system, but upon precipitation as inclusion bodies their stability dramatically increases. The susceptibility of aggregated polypeptides to proteolytic attack remains essentially unexplored in bacteria and also in eukaryotic cells. We have studied here the in vitro proteolysis of beta-galactosidase fusion proteins by trypsin treatment of purified inclusion bodies. A cascade digestion process similar to that occurring in vivo has been observed in the insoluble fraction of the digestion reaction. This suggests that major protease target sites are not either lost or newly generated by protein precipitation and that the digestion occurs in situ probably on solvent-exposed surfaces of inclusion bodies. In addition, the sequence of the proteolytic attack is influenced by protein determinants other than amino acid sequence, the early digestion steps having a dramatic influence on the further cleavage susceptibility of the intermediate degradation fragments. These observations indicate unexpected conformational changes of inclusion body proteins during their site-limited digestion, that could promote protein release from aggregates, thus partially accounting for the plasticity of in vivo protein precipitation and solubilization in bacteria.  相似文献   

20.
The development of stable enzymes is a key issue in both the food and feed industries. Consequently, the aim of the current study is to evaluate the impact of various additives (sodium chloride, sodium citrate, mannitol, methylparaben, polyethylene glycol 3350, ethylenediaminetetraacetic acid disodium salt, and a serine protease inhibitor) on the stability of a mushroom phytase produced by solid-state cultivation and recovery. Also observed was the effect of the additives on microbial growth inhibition by monitoring both the change in optical density over 30 days of storage and proteolytic activity. Initially, eight experimental formulations were prepared along with a control. After screening, a 32 factorial design was applied to define suitable concentrations of the selected additives. Among the eight formulations tested, the formulation containing NaCl, PEG 3350, and methylparaben retained all of the initial phytase activity after 50 days of storage, with no detected interference from protease activity. Sodium citrate, a metal chelation agent, presented the unusual effect of reducing protease activity in the formulations. Although all formulations presented better phytase stability when compared to the control, NaCl and PEG were both able to prolong the stability of the enzyme activity and also to inhibit microbial growth during storage, making them favorable for application as food and feed additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号