首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In many insect taxa, there is a well‐established trade‐off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade‐off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long‐winged species was significantly higher than that of short‐winged and wingless species (p < .01), while GSI of wingless species was higher than that of long‐winged and short‐winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = −.2649 for male and −.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long‐winged individuals are flight capable at the expense of reproduction, while short‐winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade‐off between flight and reproduction in Acridoidea.  相似文献   

2.
Increasingly, land managers have attempted to use extreme prescribed fire as a method to address woody plant encroachment in savanna ecosystems. The effect that these fires have on herbaceous vegetation is poorly understood. We experimentally examined immediate (<24 hr) bud response of two dominant graminoids, a C3 caespitose grass, Nassella leucotricha, and a C4 stoloniferous grass, Hilaria belangeri, following fires of varying energy (J/m2) in a semiarid savanna in the Edwards Plateau ecoregion of Texas. Treatments included high‐ and low‐energy fires determined by contrasting fuel loading and a no burn (control) treatment. Belowground axillary buds were counted and their activities classified to determine immediate effects of fire energy on bud activity, dormancy, and mortality. High‐energy burns resulted in immediate mortality of N. leucotricha and H. belangeri buds (p < .05). Active buds decreased following high‐energy and low‐energy burns for both species (p < .05). In contrast, bud activity, dormancy, and mortality remained constant in the control. In the high‐energy treatment, 100% (n = 24) of N. leucotricha individuals resprouted while only 25% (n = 24) of H. belangeri individuals resprouted (p < .0001) 3 weeks following treatment application. Bud depths differed between species and may account for this divergence, with average bud depths for N. leucotricha 1.3 cm deeper than H. belangeri (p < .0001). Synthesis and applications: Our results suggest that fire energy directly affects bud activity and mortality through soil heating for these two species. It is imperative to understand how fire energy impacts the bud banks of grasses to better predict grass response to increased use of extreme prescribed fire in land management.  相似文献   

3.
Lacking systematic evaluations in soil quality and microbial community recovery after different amendments addition limits optimization of amendments combination in coal mine soils. We performed a short‐term incubation experiment with a varying temperature over 12 weeks to assess the effects of three amendments (biochar: C; nitrogen fertilizer at three levels: N‐N1~N3; microbial agent at two levels: M‐M1~M2) based on C/N ratio (regulated by biochar and N level: 35:1, 25:1, 12.5:1) on mine soil properties and microbial community in the Qilian Mountains, China. Over the incubation period, soil pH and MBC/MBN were significantly lower than unamended treatment in N addition and C + M + N treatments, respectively. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly in all amended treatments (p < .001). Higher AP, AK, MBC, MBN, and lower MBC/MBN were observed in N2‐treated soil (corresponding to C/N ratio of 25:1). Meanwhile, N2‐treated soil significantly increased species richness and diversity of soil bacterial community (p < .05). Principal coordinate analysis further showed that soil bacterial community compositions were significantly separated by N level. C‐M‐N treatments significantly increased the relative abundance (>1%) of the bacterial phyla Bacteroidetes and Firmicutes, and decreased the relative abundance of fungal phyla Chytridiomycota (p < .05). Redundancy analysis illustrated the importance of soil nutrients in explaining variability in bacterial community composition (74.73%) than fungal composition (35.0%). Our results indicated that N addition based on biochar and M can improve soil quality by neutralizing soil pH and increasing soil nutrient contents in short‐term, and the appropriate C/N ratio (25:1) can better promote microbial mass, richness, and diversity of soil bacterial community. Our study provided a new insight for achieving restoration of damaged habitats by changing microbial structure, diversity, and mass by regulating C/N ratio of amendments.  相似文献   

4.
Nutrients form a link between herbivores and plant. This study explored the physiological and ecological response mechanism of Haloxylon ammodendron population to rodent disturbance in Gurbantunggut Desert from the perspective of nutrient cycle. Through field investigation, we quantified rodent disturbance intensity (DI) to H. ammodendron and analyzed the ecological response mechanism of H. ammodendron population to rodent disturbance from the perspective of plant and soil nutrient cycling and changes. The results indicated that moderate rodent DI (number of effective burrows = 3–6) was the maximum limit that can be tolerated by H. ammodendron; the threshold for optimal H. ammodendron response to rodent disturbance was mild (number of burrows = 1–3). Meanwhile, the rodent disturbance caused significant nutrient enrichment (e.g., organic carbon, available phosphorus, and available potassium) in the deeper soil (at 20–40 and 40–60 cm depth) and significantly reduced the soil total salt content (p < .05). Furthermore, as the DI increased, the branches of H. ammodendron showed significantly increased soluble total sugar, crude fiber, and total nitrogen contents (p < .05) but significantly decreased crude fat and crude protein contents (p < .05); these results are related to the nutritional target transfer strategy evolved by H. ammodendron for long‐term resistance to rodent disturbance. The current study clarified the optimal disturbance model for mutually beneficial H. ammodendron–great gerbil relationship, on the basis of which the ecological response mechanism of H. ammodendron population to rodent disturbance in deserts was illustrated. The current study provides a scientific basis for the protection mechanisms of desert plants to rodent disturbance.  相似文献   

5.
Studies have indicated that the abundance and community structure of gut microbiota are altered by diet. In this study, next‐generation sequencing of the 16S rRNA gene amplicon was performed to evaluate variations in the gut microbiota of wild and captive individuals of both sexes of Calotes versicolor. The results showed that there was a significant sex difference in microbial community structure for wild C. versicolor, Bacteroide was the dominant genus in wild females (WF), whereas Ochrobactrum was the dominant genus in wild males (WM). Acinetobacter and Hymenobacter were the dominant genera in WF, while Clostridium was the dominant genus in captive females (CF). The results indicated that differences in diet between wild and captive C. versicolor also resulted in variations in gut microbiota. Thus, it was not surprising that captivity and sex shape the gut microbiota in C. versicolor. In summary, the fundamental information presented about the gut microbiota of both sexes of wild (and captive females) C. versicolor, indicates that the artificial environments are not suitable for the wild C. versicolor.  相似文献   

6.
Qualitative and quantitative assessment of heavy metals in the Thermal Power Plant effluent was performed to study the impact of their toxic effects on various biomarkers (carbohydrate, protein and lipid profiles). Heavy metals present in the water were in the order Fe > Cu > Zn > Mn > Ni > Co > Cr. Fe and Ni exceeded and Cr was equal to the USA standards set by UNEPGEMS. Glycogen in liver (p < 0.001) and muscle (p < 0.01) depleted significantly. Insignificant (p < 0.05) decline in blood glucose (−21.0%) and significant (p < 0.05) elevation in both total protein and globulin in serum, liver and muscle was noted. Albumin decreased significantly (p < 0.01) in serum but showed significant (p < 0.05) increase in liver and muscle. Thus A:G ratio fell in serum and rose in liver and muscle. Similarly lipid profile also gets altered where significant elevation in serum total lipid (p < 0.01), total cholesterol (p < 0.01), phospholipid (p < 0.05), triglycerides (p < 0.001), LDL (p < 0.01) was observed but significant (p < 0.05) decline in VLDL was recorded. These biomarkers suggested that fish become hypoglycemic, hyperlipidemic and hypercholesterolemic. Heavy metals also provoked immune response as evident from the rise in globulin. In conclusion the Thermal Power Plant wastewater containing heavy metals induced stress, making fish weak and vulnerable to diseases.  相似文献   

7.
Ischaemia/reperfusion (I/R)‐induced hepatic injury is regarded as a main reason of hepatic failure after transplantation or lobectomy. The current study aimed to investigate how the opioid analgesic remifentanil treatment affects I/R‐induced hepatic injury and explore the possible mechanisms related to HIF1α. Initially, an I/R‐induced hepatic injury animal model was established in C57BL/6 mice, and an in vitro hypoxia‐reoxygenation model was constructed in NCTC‐1469 cells, followed by remifentanil treatment and HIF1α silencing treatment. The levels of blood glucose, lipids, alanine transaminase (ALT) and aspartate transaminase (AST) in mouse serum were measured using automatic chemistry analyser, while the viability and apoptosis of cells were detected using CCK8 assay and flow cytometry. Our results revealed that mice with I/R‐induced hepatic injury showed higher serum levels of blood glucose, lipids, ALT and AST and leukaemia inhibitory factor (LIF) expression, and lower HIF1α and ZEB1 expression (P < .05), which were reversed after remifentanil treatment (P < .05). Besides, HIF1α silencing increased the serum levels of blood glucose, lipids, ALT and AST (P < .05). Furthermore, hypoxia‐induced NCTC‐1469 cells exhibited decreased HIF1α and ZEB1 expression, reduced cell viability, as well as increased LIF expression and cell apoptosis (P < .05), which were reversed by remifentanil treatment (P < .05). Moreover, HIF1α silencing down‐regulated ZEB1 expression, decreased cell viability, and increased cell apoptosis (P < .05). ZEB1 was identified to bind to the promoter region of LIF and inhibit its expression. In summary, remifentanil protects against hepatic I/R injury through HIF1α and downstream effectors.  相似文献   

8.
A research study on morphometrics of Kalophrynus palmatissimus (commonly known as Lowland Grainy Frog) at Ayer Hitam Forest Reserve (AHFR), Selangor and Pasoh Forest Reserve (PFR), Negeri Sembilan was carried out from 12 November 2016 to 13 September 2017. The study was to examine data on the morphometric traits of K. palmatissimus at the two forest reserves. 15 morphometric traits of K. palmatissimus that were taken by using vernier calipers. Frog surveys were done by using 15 and 18 nocturnal 400 m transect lines with an interval distance of 20 m at AHFR and PFR, respectively. The GPS coordinates for all frog samples were recorded to ensure the precise geographic location. In addition, five climatic data were recorded. The results showed that most morphometric traits in AHFR (n = 34) and PFR (n = 31) were positively correlated with each other. On the other hand, climatic factor, which was soil pH, had a significant positive influence on most of the morphometric traits (p < .01), except for tympanum diameter and upper eyelid width (p ≥ .05). Meanwhile, the temperature had a significantly negative influence on all morphometric traits (p < .01). General linear model (GLM) analysis showed that snout‐vent length (SVL) influenced most morphometric traits (F ≤ 80.86, p < .01), except for hand length (HAL: F = 0.299, p > .05). Later, it was found that the snout‐vent length of K. palmatissimus at AHFR was slightly larger than at PFR (AHFR: μ = 37.00 mm, SE = 1.16 c.f. PFR: μ = 30.29 mm, SE = 1.07). It showed that there were variations in morphometric traits of K. palmatissimus at AHFR and PFR. From PCA analysis, morphometric traits are grouped into two components for AHFR and PFR, respectively. In AHFR, head length, eye diameter, head width, internarial distance, interorbital distance, forearm length, tibia length, foot length, and thigh length were strongly correlated, while snout length and eye‐nostril distance were strongly correlated. In PFR, eye diameter, head width, internarial distance, interorbital distance, foot length, and thigh length were strongly correlated, though snout length and eye‐nostril distance were strongly correlated, hence, suggested that all morphometric traits grow simultaneously in K. palmatissimus with eye‐nostril distance (EN), and snout length (SL) growing almost simultaneously at AHFR (r = .91) and PFR (r = .97). There is still a lack of available information regarding the distribution and morphometric studies of K. palmatissimus in Malaysia, especially at AHFR and PFR. This study showed 15 different morphometric traits of K. palmatisssimus between AHFR and PFR, with K. palmatissimus at AHFR were found to be slightly larger than at PFR.  相似文献   

9.
Gut microbiota is associated with host health and its environmental adaption, influenced by seasonal variation. Pomacea canaliculata is one of the world''s 100 worst invasive alien species. Here, we used high‐throughput sequencing of the 16S rRNA gene to analyze the seasonal variation of gut microbiota of P. canaliculata. The results suggested that the predominant gut microbial phyla of P. canaliculata included Firmicutes and Proteobacteria, which helped digest plant food and accumulate energy. The gut microbiota of P. canaliculata in summer group showed the highest diversity, whereas the winter group possessed the lowest, probably due to the shortage of food resources of P. canaliculata in winter. Principal coordinate analysis analysis based on unweighted unifrac and weighted unifrac indicated that the composition of gut microbiota of P. canaliculata significantly varied across seasons. Bacteroidetes tended to be enriched in summer by linear discriminant analysis effect size analysis. Actinobacteria and Cyanobacteria were extremely abundant in autumn, while Fusobacteria and Cetobacterium enriched in winter. In conclusion, the structure of the gut microbiota of P. canaliculata was significantly different among seasons, which was beneficial to the environment adaptation and the digestion and metabolism of food during different periods.  相似文献   

10.
BackgroundThe relationship between hyperuricemia and chronic kidney disease (CKD) has been found in various observational studies. Although hypouricemia is associated with cardiovascular events, it has not been established as a risk factor for CKD. We investigated the relationship between serum uric acid level and the loss of kidney function and incident CKD in healthy people.ResultsThe following data was obtained: mean±SD age, male, 39.6±10.4 years, female 38.4±10.8 years; eGFR, male, 81.9±16.4 ml/min/1.73m2, female, 82.1±17.5 ml/min/1.73m2; serum uric acid level, male, 5.8±1.2 mg/dl, female, 4.1±0.9 mg/dl. Both low and high serum uric acid levels were associated with the outcome and eGFR decline in males (multivariate logistic additional additive models, linear p = 0.0001, spline p = 0.043; generalized additive models, linear p = 0.0001, spline p = 0.012). In subjects with low serum uric acid levels (male, <5 mg/dl; female, <3.6 mg/dl), multivariate linear mixed models showed that low serum uric acid levels were associated with eGFR decline in a time-dependent manner (male, p = 0.0001; female, p = 0.045).ConclusionThis study showed that low as well as high levels of uric acid are associated with the loss of kidney function. Hypouricemia is a candidate predictor of kidney function decline in healthy people.  相似文献   

11.

[Purpose]

This study investigated the effects of high-intensity exercise (Ex) and high dietary fat intake on lipid metabolism in the liver of rats.

[Methods]

Male Sprague-Dawley rats were randomly assigned to one of the four groups (n=10 per group) that were maintained on a normal diet (ND) or high-fat diet (HFD) consisting of 30% fat (w/w), with or without exercise on a treadmill at 30 m/min and 8% grade) for 4 weeks (i.e., ND, ND+Ex, HFD, and HFD+Ex groups).

[Results]

Body weight (p<.001), total plasma cholesterol (TC) (p<.001), triglyceride (TG) (p<.05), and liver TG levels (p<.05) were increased in the HFD group relative to the ND groups, and serum glucose (p<.05), insulin (p<.05), homeostatic model assessment of insulin resistance (HOMA-IR) (p<.01), and liver TG levels (p<.01) were also higher in the HFD group compared to the ND+Ex group. Plasma free fatty acid was elevated in the HFD+Ex group compared to the HFD group (p<.01). With the exception of acetyl coenzyme A carboxylase, the expression of lipid metabolism-related genes in the liver was altered in the Ex groups compared to the control group (p<.05), with genes involved in lipolysis specifically up regulated in the HFD+Ex group compared to the other groups.

[Conclusion]

Vigorous exercise may increase glucose utilization and fat oxidation by activating genes in the liver that are associated with lipid metabolism compared to that in animals consuming a HFD without exercise. Therefore, high intensity exercise can be considered to counter the adverse effects of high dietary fat intake.  相似文献   

12.

Background

Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen minipigs and the Ossabaw minipigs.

Methods and Findings

The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight gain through the study was significant in obese Göttingen and Ossabaw minipigs. The lean Göttingen minipigs’ cecal microbiota contained significantly higher abundance of Firmicutes (P<0.006), Akkermensia (P<0.01) and Methanovibribacter (P<0.01) than obese Göttingen minipigs. The obese Göttingen cecum had higher abundances of the phyla Spirochaetes (P<0.03), Tenericutes (P<0.004), Verrucomicrobia (P<0.005) and the genus Bacteroides (P<0.001) compared to lean minipigs. The relative proportion of Clostridium cluster XIV was 7.6-fold higher in cecal microbiota of obese Göttingen minipigs as compared to lean. Obese Ossabaw minipigs had a higher abundance of Firmicutes in terminal ileum and lower abundance of Bacteroidetes in colon than lean Ossabaw minipigs (P<0.01). Obese Ossabaws had significantly lower abundances of the genera Prevotella and Lactobacillus and higher abundance of Clostridium in their colon than the lean Ossabaws. Overall, the Göttingen and Ossabaw minipigs displayed different microbial communities in response to diet-induced obesity in the different sections of their intestine.

Conclusion

Obesity-related changes in the composition of the gut microbiota were found in lean versus obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese minipigs.  相似文献   

13.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation (Radj2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea (Radj2 = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.  相似文献   

14.
The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function.  相似文献   

15.
QuestionHow conservation and forest type affect macrofungal compositional diversity is not well understood. Even less is known about macrofungal associations with plants, soils, and geoclimatic conditions.LocationSouthern edge of boreal forest distribution in China, named as Huzhong Nature Reserve.MethodsWe surveyed a total of 72 plots for recording macrofungi, plants, and topography in 2015 and measured soil organic carbon, nitrogen, and bulk density. Effects of conservation and forest types on macrofungi and plants were compared, and their associations were decoupled by structural equation modeling (SEM) and redundancy ordination (RDA).ResultsConservation and forest type largely shaped macrofungal diversity. Most of the macrofungal traits declined with the conservation intensities or peaked at the middle conservation region. Similarly, 91% of macrofungal traits declined or peaked in the middle succession stage of birch‐larch forests. Forest conservation resulted in the observation of sparse, larch‐dominant, larger tree forests. Moreover, the soil outside the Reserve had more water, higher fertility, and lower bulk density, showing miscellaneous wood forest preference. There is a complex association between conservation site characteristics, soils, plants, and macrofungi. Variation partitioning showed that soil N was the top‐one factor explaining the macrofungal variations (10%). As shown in SEM coefficients, conservation effect to macrofungi (1.1–1.2, p < .05) was like those from soils (1.2–1.6, p < .05), but much larger than the effect from plants (0.01–0.14, p > .10). For all tested macrofungal traits, 89%–97% of their variations were from soils, and 5%–21% were from conservation measures, while plants compensated 1%–10% of these effects. Our survey found a total of 207 macrofungal species, and 65 of them are new updates in this Reserve, indicating data shortage for the macrofungi list here.ConclusionOur findings provide new data for the joint conservation of macrofungi and plant communities, highlighting the crucial importance of soil matrix for macrofungal conservation in boreal forests.  相似文献   

16.
Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient''s prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K‐M curves, ROC curves and C‐index on test set. In test set, IGCI score (C‐index = 0.630) is significantly better than AJCC stage (C‐index = 0.541, p < 0.05) and CIN25 (C‐index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi‐squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p‐value (p < 0.1) in both chi‐squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti‐tumour drugs has changed significantly (p < 0.05).  相似文献   

17.
The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host’s health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF), or a high-fat/low-fiber (HF) diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA) profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P<0.001) and Faecalibacterium prausnitzii (P<0.05) were higher in the LF pigs, while Enterobacteriaceae were more abundant in the HF pigs (P<0.001). Higher numbers of proteins affiliated to Enterobacteriaceae were also present in the HF samples. Proteins for polysaccharide breakdown did almost exclusively originate from Prevotellaceae. Total and individual fecal SCFA concentrations were higher for pigs of the LF treatment (P<0.05), whereas fecal ammonia concentrations did not differ between treatments (P>0.05). Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05), while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions.Data are available via ProteomeXchange with identifier PXD003447.  相似文献   

18.
《Aging cell》2021,20(6)
Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA‐methylation modifying enzymes DNMT3A or TET2. We used DNA‐methylation array and whole‐genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10−7) to 3.08 years (EEAA, p < 3.7 × 10−18). Mutations in most CHIP genes except DNA‐damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all‐cause mortality (hazard ratio 2.90, p < 4.1 × 10−8) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10−6) compared to those who were CHIP−/AgeAccelHG−. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG− were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions.  相似文献   

19.
Atrial fibrillation (AF) is associated with short-term mortality after ST-elevation myocardial infarction (STEMI), but there is limited data on the temporal association between AF and mortality after STEMI. A total of 830 patients were included (age: 62 ± 12 years, 76 % male). Patients with new-onset AF < 30 days after STEMI were divided among three subgroups: AF on the day of admission, AF 24–72 h and AF > 72 h after admission. Thirty-day mortality was assessed by telephone and via the municipal population registry. Twenty patients died < 30 days after admission. In 41 patients, AF was detected on the day of admission, in 14 patients 24–72 h after admission and in 18 patients > 72 h after admission. Mortality was higher in patients with AF on the day of admission (7.3 vs 2.2 %, p = 0.036) and 24–72 h after admission (14.3 vs 1.4 %, p < 0.001), but not in patients with AF > 72 h after admission (0 vs 1.1 %, p > 0.999). Age (odds ratio (OR) 1.123, p < 0.001), Killip class (adjusted OR 8.341, p < 0.001), AF on the day of admission (OR 3.585, p = 0.049) and 24–72 h after admission (OR 11.515, p = 0.003) were, amongst other variables, associated with an increased 30-day mortality. In conclusion, only new-onset incident AF during the first 72 h after admission was associated with 30-day mortality in STEMI patients.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-015-0709-2) contains supplementary material, which is available to authorized users.  相似文献   

20.

Introduction

Previous reports have shown that the gastrointestinal (GI) bacterial microbiota can have profound effects on the lungs, which has been described as the “gut-lung axis”. However, whether a “lung-gut” axis exists wherein acute lung inflammation perturbs the gut and blood microbiota is unknown.

Methods

Adult C57/Bl6 mice were exposed to one dose of LPS or PBS instillation (n = 3 for each group) directly into lungs. Bacterial microbiota of the bronchoalveolar lavage fluid, blood, and cecum were determined using 454 pyrotag sequencing and quantitative polymerase chain reaction (qPCR) at 4 through 168 hours post-instillation. We then investigated the effects of oral neomycin and streptomycin (n = 8) on the microbiota at 4 and 24 hours post LPS instillation versus control treatment (n = 5 at baseline and 4 hours, n = 7 at 24 hours).

Results

At 24 hours post LPS instillation, the total bacterial count was significantly increased in the cecum (P<0.05); whereas the total bacterial count in blood was increased at 4, 48, and 72 hours (P<0.05). Antibiotic treatment reduced the total bacteria in blood but not in the cecum. The increase in total bacteria in the blood correlated with Phyllobacteriaceae OTU 40 and was significantly reduced in the blood for both antibiotic groups (P<0.05).

Conclusion

LPS instillation in lungs leads to acute changes in the bacterial microbiota in the blood and cecum, which can be modulated with antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号