首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A knowledge-based approach to the modelling of enzyme-peptide inhibitor complexes is described. Given the structure of an enzyme, and knowledge of its binding site, the method seeks to predict the binding geometry of a peptide ligand. This novel method involves using examples of side-chain packing derived from proteins of known three-dimensional structure to define possible packing arrangements of a peptide inhibitor group to its binding site. A suite of programs, GEMINI, was written and used to predict the packing of pairs of amino acid groups from three inhibitors complexed to their enzymes for which the X-ray structures were available. These included the Phe group of the inhibitor H142 bound to endothiapepsin, the Leu group of CLT complexed to thermolysin and the C-terminus of Gly-L-Tyr bound to carboxypeptidase A. A detailed comparison of the modelled and observed inhibitor coordinates was made. This approach may be extended to modelling other types of protein interactions.  相似文献   

2.
18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design   总被引:12,自引:0,他引:12  
A systematic technique for protein modelling that is applicable to the design of drugs, peptide vaccines and novel proteins is described. Our approach is knowledge-based, depending on the structures of homologous or analogous proteins and more generally on a relational data base of protein three-dimensional structures. The procedure simultaneously aligns the known tertiary structures, selects fragments from the structurally conserved regions on the basis of sequence homology, aligns these with the 'average structure' or 'framework', builds on the loops selected from homologous proteins or a wider database, substitutes sidechains and energy minimises the resultant model. Applications to modelling an homologous structure, tissue plasminogen activator on the basis of another serine proteinase, and to modelling an analogous protein, HIV viral proteinase on the basis of aspartic proteinases, are described. The converse problem of ab initio design is also addressed: this involves the selection of an amino acid sequence to give a particular tertiary structure, in this case a symmetrical domain of two Greek-key motifs.  相似文献   

3.
Cultured resident murine macrophages are incubated in the continuous presence of the fluorescent endocytic marker Lucifer Yellow and a phorbol ester that activates protein kinase C. Under these steady-state labeling conditions the fluorescent tracer was, for the most part, in a tubular/reticular compartment. Enzyme cytochemical localization of acid phosphatase in the same cells showed essentially a one-to-one correlation between the Lucifer Yellow- and acid phosphatase-containing compartments. Procedures for epifluorescence observation and subsequent enzyme cytochemical examination of the same whole mount cells are described. In addition, chemical fixation methods for the preservation of this labile tubular/reticular compartment are presented.  相似文献   

4.
Spectroscopic properties of two newly synthesized water-soluble thiol-reactive fluorescent probes, 7-(iodoacetamido)-coumarin-4-carboxylic acid (I-Cca) and N-iodoacetyl-beta-(2-naphthyl)alanine (I-Nal), were characterized using single cysteine mutants of Escherichia coli adenylate kinase. Together with two known water-soluble thiol-reactive dyes (Lucifer yellow iodoacetamide and 5-iodoacetamidosalicylic acid) and as well, tryptophan residues (either native or inserted into a protein by site directed mutagenesis), these probes can be arranged pairwise in a molecular tool set for studies of structural transitions in proteins by means of fluorescence resonance energy-transfer (FRET) experiments. A set of seven donor/acceptor pairs which allow determination of intramolecular distances and their distributions over the range 10-40 A in labeled protein derivatives is described. The charged groups present in the probes facilitate the conjugation reaction and improve postlabeling purification. General considerations for design of charged probes and site-directed labeling for applications of FRET methods in studies of protein structure and dynamics are presented.  相似文献   

5.
Selective modification of an alpha subunit of chloroplast coupling factor 1   总被引:1,自引:0,他引:1  
C M Nalin  B Snyder  R E McCarty 《Biochemistry》1985,24(9):2318-2324
Lucifer yellow (4-amino-N-[3-(vinylsulfonyl)phenyl]naphthalimide-3,6-disulf onate), a fluorescent probe that can react covalently with sulfhydryl or amino groups, has been used to modify chloroplast coupling factor 1 (CF1). Conditions are described under which Lucifer yellow selectively labels the alpha subunit of CF1 to the extent of about 1 mol of probe per mole of CF1. An especially reactive amino group is apparently labeled, and modification has little effect on the ATPase activity of the enzyme. Lucifer yellow is a useful probe for fluorescence energy transfer measurements. The distances between this probe and fluorescent and absorbing molecules attached to seven specific sites on the beta, gamma, and epsilon subunits were determined. These distances converge to a single location. In addition to providing further information about the structure of CF1, these results suggest that the alpha subunits of CF1 are not structurally equivalent.  相似文献   

6.
《The Journal of cell biology》1987,105(6):2695-2702
We introduced several membrane-impermeant fluorescent dyes, including Lucifer Yellow, carboxyfluorescein, and fura-2, into the cytoplasmic matrix of J774 cells and thioglycollate-elicited mouse peritoneal macrophages by ATP permeabilization of the plasma membrane and observed the subsequent fate of these dyes. The dyes did not remain within the cytoplasmic matrix; instead they were sequestered within phase-lucent cytoplasmic vacuoles and released into the extracellular medium. We used Lucifer Yellow to study these processes further. In cells incubated at 37 degrees C, 87% of Lucifer Yellow was released from the cells within 30 min after dye loading. The dye that remained within the cells at this time was predominantly within cytoplasmic vacuoles. Lucifer yellow transport was temperature dependent and occurred against a concentration gradient; therefore it appeared to be an energy- requiring process. The fluorescent dyes used in these studies are all organic anions. We therefore examined the ability of probenecid (p- [dipropylsulfamoyl]benzoic acid), which blocks organic anion transport across many epithelia, to inhibit efflux of Lucifer Yellow, and found that this drug inhibited this process in a dose-dependent and reversible manner. Efflux of Lucifer Yellow from the cells did not require Na+ co-transport or Cl- antiport; however, it was inhibited by lowering of the extracellular pH. These experiments indicate that macrophages possess probenecid-inhibitable transporters which are similar in their functional properties to organic anion transporters of epithelial cells. Such organic anion transporters have not been described previously in macrophages; they may mediate the release of naturally occurring organic anions such as prostaglandins, leukotrienes, glutathione, bilirubin, or lactate from macrophages.  相似文献   

7.
Automated methods have been developed to determine the preferred packing arrangement between interacting protein groups. A suite of FORTRAN programs, SIRIUS, is described for calculating and analysing the geometries of interacting protein groups using crystallographically derived atomic co-ordinates. The programs involved in calculating the geometries search for interacting pairs of protein groups using a distance criterion, and then calculate the spatial disposition and orientation of the pair. The second set of programs is devoted to analysis. This involves calculating the observed and expected distributions of the angles and assessing the statistical significance of the difference between the two. A database of the geometries of the 400 combinations of side-chain to side-chain interaction has been created. The approach used in analysing the geometrical information is illustrated here with specific examples of interactions between side-chains, peptide groups and particular types of atom. At the side-chain level, an analysis of aromatic-amino interactions, and the interactions of peptide carbonyl groups with arginine residues is presented. At the atomic level the analyses include the spatial disposition of oxygen atoms around tyrosine residues, and the frequency and type of contact between carbon, nitrogen and oxygen atoms. This information is currently being applied to the modelling of protein interactions.  相似文献   

8.
New mass spectrometry techniques, such as electrospray ionization (ESI), allow the study of large biomolecules and peptide mixtures. The data produced are complex and interpretation can be a long and tedious process. A new suite of data-processing software is described which allows many of these operations to be carried out in a rapid, automated way. Software is described for the deconvolution of the spectra of multiply charged ions, for both pure compounds and mixtures. The rapid peptide mapping of protein digests from h.p.l.c.-m.s. data and peptide sequence confirmation from multiple-stage (MS)-m.s. data using tandem quadrupole m.s. are also described. In addition preliminary results are presented on first principle sequencing of unknown peptides from MS-m.s. experiments.  相似文献   

9.
The genetic algorithm exploits the principles of natural evolution. Solution trials are evolved by mutation, recombination and selection until they achieve near optimal solutions [1].Our own approach has now been developed [2] after a general overview on the application potential for protein structure analysis [3] to a tool to delineate the three-dimensional topology for the mainchain of small proteins [4], no matter whether they are largely helical, are mixed or -strand rich [5].Results on several protein examples for these different modelling tasks are presented and compared with the experimentally observed structures (RMSDs are around 4.5-5.5 Å). To start a modelling trial only the protein sequence and knowledge of its secondary structure is required. The fittest folds obtained after the evolution at the end of the simulations yield the three dimensional models of the fold. Current limitations are protein size (generally less than 100 aminoacids), number of secondary structure elements [7-8] and irregular topologies (e.g. ferridoxins).Further, preliminary results from current simulations are illustrated. We now want to apply simple experimental or other information, which is available long before the three-dimensional structure of the protein becomes known, to refine the modelling of the protein fold and tackle also more difficult modelling examples by our tool.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089460020304  相似文献   

10.
MOTIVATION: Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homology modelling from a computer with web connection without the need of downloading and installing large program packages and databases. RESULTS: SWISS-MODEL workspace is a web-based integrated service dedicated to protein structure homology modelling. It assists and guides the user in building protein homology models at different levels of complexity. A personal working environment is provided for each user where several modelling projects can be carried out in parallel. Protein sequence and structure databases necessary for modelling are accessible from the workspace and are updated in regular intervals. Tools for template selection, model building and structure quality evaluation can be invoked from within the workspace. Workflow and usage of the workspace are illustrated by modelling human Cyclin A1 and human Transmembrane Protease 3. AVAILABILITY: The SWISS-MODEL workspace can be accessed freely at http://swissmodel.expasy.org/workspace/  相似文献   

11.
This paper demonstrates the use of a novel suite of data-based, recursive modelling techniques for the investigation of biological and other time-series data, including high resolution leaf elongation. The Data-Based Mechanistic (DBM) modelling methodology rejects the common practice of empirical curve fitting for a more objective approach where the model structure is not assumed a priori, but instead is identified directly from the data series in a stochastic form. Further, this novel approach takes advantage of the latest techniques in optimal recursive estimation of non-stationary and non-linear time-series. Here, the utility and ease of use of these techniques is demonstrated in the examination of two time-series of leaf elongation in an expanding leaf of tomato (Lycopersicon esculentum L. cv. Ailsa Craig) growing in a root pressure vessel (RPV). Using this analysis, the component signals of the elongation series are extracted and considered in relation to physiological processes. It is hoped that this paper will encourage the wider use of these new techniques, as well as the associated Data-Based Mechanistic (DBM) modelling strategy, in analytical plant physiology.  相似文献   

12.
The successful modelling of the structure of two hydrated calcium-rich natural zeolites is described, showing how modelling can reproduce their complex structure, in excellent agreement with experiment. Furthermore, we demonstrate how such methods are able to determine the preferred Al ordering in the mineral Goosecreekite. The dehydration behaviour of Goosecreekite is also predicted. The interatomic potentials for water, evaluated here, are found to be robust and transferable to zeolitic materials.  相似文献   

13.
Four muscle fibre types are described in the biceps and extensor digitorum communis muscles of the newt forelimb. The histological criteria forming the basis for the distinctions include differential staining with p-phenylenediamine and succinate dehydrogenase histochemistry and electron microscopy. In addition, three distinctive motor unit types are described for the biceps muscle. These are fast units, slow units and intermediate units. The structure of muscle fibre and the physiological characteristics of muscle fibres belonging to each motor unit, have been correlated by using iontophoretic passage of Lucifer yellow into muscle fibres belonging to physiologically characterized motor units and their subsequent histological identification by the succinate dehydrogenase reaction. The three motor unit types correspond to slow muscle fibres, intermediate muscle fibres and two classes of fast muscle fibres.  相似文献   

14.

Background  

The alignment of two or more protein sequences provides a powerful guide in the prediction of the protein structure and in identifying key functional residues, however, the utility of any prediction is completely dependent on the accuracy of the alignment. In this paper we describe a suite of reference alignments derived from the comparison of protein three-dimensional structures together with evaluation measures and software that allow automatically generated alignments to be benchmarked. We test the OXBench benchmark suite on alignments generated by the AMPS multiple alignment method, then apply the suite to compare eight different multiple alignment algorithms. The benchmark shows the current state-of-the art for alignment accuracy and provides a baseline against which new alignment algorithms may be judged.  相似文献   

15.
For even the best-studied species, there is a large gap in their representation in the protein databank (PDB) compared to within sequence databases. Typically, less than 2% of sequences are represented in the PDB. This is partly due to the considerable experimental challenge and manual inputs required to solve three dimensional structures by methods such as X-ray diffraction and multi-dimensional nuclear magnetic resonance (NMR) spectroscopy in comparison to high-throughput sequencing. This gap is made even wider by the high level of redundancy within the PDB and under-representation of some protein categories such as membrane-associated proteins which comprise approximately 25% of proteins encoded in genomes. A traditional route to closing the sequence-structure gap is offered by homology modelling whereby the sequence of a target protein is modelled on a template represented in the PDB using in silico energy minimisation approaches. More recently, online homology servers have become available which automatically generate models from proffered sequences. However, many online servers give little indication of the structural plausibility of the generated model. In this paper, the online homology server Geno3D will be described. This server uses similar software to that used in modelling structures during structure determination and thus generates data allowing determination of the structural plausibility of models. For illustration, modelling of a chemotaxis protein (CheY) from Pseudomononas entomophila L48 (accession YP_609298) on a template (PDB id. 1mvo), the phosphorylation domain of an outer membrane protein PhoP from Bacillus subtilis, will be described.  相似文献   

16.
An approach is described for modelling the three-dimensional structure of a protein from the tertiary structures of several homologous proteins that have been determined by X-ray analysis. A method is developed for the simultaneous superposition of several protein molecules and for the calculation of an 'average structure' or 'framework'. Investigation of the convergence properties of this method, in the case of both weighted and unweighted least squares, demonstrates that both give a unique answer and the latter is robust for an homologous family of proteins. Multi-dimensional scaling is used to subgroup of the proteins with respect to structural homology. The framework calculated on the basis of the family of homologous proteins, or of an appropriate subgroup, is used to align fragments of the known protein structures of high sequence homology with the unknown. This alignment provides a basis for model building the tertiary structure. Different techniques for using the framework to model the mainchain of various globins and an immunoglobulin domain in the structurally conserved regions are investigated.  相似文献   

17.
After the membrane impermeant dye Lucifer Yellow is introduced into the cytoplasmic matrix of J774 cells, the dye is sequestered within cytoplasmic vacuoles and secreted into the extracellular medium. In the present work we studied the intracellular transport of Lucifer Yellow in J774 macrophages and the nature of the cytoplasmic vacuoles into which this dye is sequestered. When the lysosomal system of J774 cells was prelabeled with a Texas red ovalbumin conjugate and Lucifer Yellow was then loaded into the cytoplasm of the cells by ATP-mediated permeabilization of the plasma membrane, the vacuoles that sequestered Lucifer Yellow 30 min later were distinct from the Texas red-stained lysosomes. After an additional 30 min Lucifer Yellow and Texas red colocalized in the same membrane bound compartments, indicating that the Lucifer Yellow had been delivered to lysosomes. We next prelabeled the plasma membrane of J774 cells with anti-macrophage antibody and Texas red protein A before Lucifer Yellow was loaded into the cells. The phase-lucent vacuoles that subsequently sequestered Lucifer Yellow also stained with Texas red, showing that they were part of the endocytic pathway. J774 cells were fractionated on percoll density gradients either 15 or 60 min after Lucifer Yellow was introduced into the cytoplasmic matrix of the cells. In cells fractionated after 15 min, Lucifer Yellow was contained within the fractions of light buoyant density that contain plasma membrane and endosomes; the dye later appeared in vesicles of higher density which contained lysosomes. Secretion of Lucifer Yellow from the cytoplasmic matrix of J774 cells is inhibited by the organic anion transport blocker probenecid. We found that probenecid also reversibly inhibited sequestration of dye, indicating that sequestration of dye within cytoplasmic vacuoles was also mediated by organic anion transporters. These studies show that the vacuoles that sequester Lucifer Yellow from the cytoplasmic matrix of J774 cells possess the attributes of endosomes. Thus, in addition to their role in sorting of membrane bound and soluble substances, macrophage endosomes may play a role in the accumulation and transport of molecules resident in the soluble cytoplasm.  相似文献   

18.
After more than a decade of method development, cross-linking in combination with mass spectrometry and bioinformatics is finally coming of age. This technology now provides improved opportunities for modelling by mapping structural details of functional complexes in solution. The structure of proteins or protein complexes is ascertained by identifying amino acid pairs that are positioned in close proximity to each other. The validity of this technique has recently been benchmarked for large multi-protein complexes, by comparing cross-link data with that from a crystal structure of RNA polymerase II. Here, the specific nature of this cross-linking data will be discussed to assess the technical challenges and opportunities for model building. We believe that once remaining technological challenges of cross-linking/mass spectrometry have been addressed and cross-linking/mass spectrometry data has been incorporated into modelling algorithms it will quickly become an indispensable companion of protein and protein complex modelling and a corner-stone of integrated structural biology.  相似文献   

19.
Abstract

Knowledge-based homology modelling together with site-directed mutagenesis, epitope and conformational mapping is an approach to predict the structures of proteins and for the rational design of new drugs. In this study we present how this procedure has been applied to model the structure of herpes simplex virus type 1 thymidine kinase (HSV1 TK, HSV1 ATP-thymidine-5′-phosphotransferase, EC 2.7.1.21). We have used, and evaluated, several secondary structure prediction methods, such as the classical one based on Chou and Fastman algorithm, neural networks using the Kabsch and Sander classification, and the PRISM method. We have validated the algorithms by applying them to the porcine adenylate kinase (ADK), whose three-dimensional structure is known and that has been used for the alignment of the TKs as well. The resulting first model of HSV1-TK consisted of the first β-strand connected to the phosphate binding loop and its subsequent α-helix, the fourth β-strand connected to the conserved FDRH sequence and two α-helix with basic amino acids. The 3D structure was built using the X-ray structure of ADK as template and following the general procedure for homology modelling. We extended the model by means of COMPOSER, an automatic process for protein modelling. Site-directed mutagenesis was used to experimentally verify the predicted active-site model of HSV1-TK. The data measured in our lab and by others support the suggestion that the FDRH motif is part of the active site and plays an important role in the phosphorylation of substrates. The structure of HSV1 TK, recently solved in collaboration with Prof. G. Schulz at 2.7 Å resolution, includes 284 of 343 residues of the N-terminal truncated TK. The secondary structures could be clearly assigned and fitted to the density. The comparison between crystallographically determined structure and the model shows that nearly 70% of the HSV1 TK structure has been correctly modelled by the described integrated approach to knowledge based ligand protein complex structure prediction. This indicate that computer assisted methods, combined with manual” correction both for alignment and 3D construction are useful and can be successful.  相似文献   

20.
Membrane proteins, which constitute approximately 20% of most genomes, are poorly tractable targets for experimental structure determination, thus analysis by prediction and modelling makes an important contribution to their on-going study. Membrane proteins form two main classes: alpha helical and beta barrel trans-membrane proteins. By using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we addressed alpha-helical topology prediction. This method has accuracies of 77.4% for prokaryotic proteins and 61.4% for eukaryotic proteins. The method described here represents an important advance in the computational determination of membrane protein topology and offers a useful, and complementary, tool for the analysis of membrane proteins for a range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号