首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro-cultured cardiomyocytes treated with different inflammatory cytokines were analyzed. In addition, to investigate the interplay between tumor growth and cardiac function in an in vivo system, immunocompetent female mice were inoculated with cancer cells and treated with the chemotherapeutic drug doxorubicin at a dosing schedule able to suppress tumor growth without inducing cardiac alterations. Analyses carried out in cardiomyocytes treated with the inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), interleukin 6 (IL-6), IL-8, and IL-1β revealed severe phenotypic changes, for example, of contractile cytoskeletal elements, mitochondrial membrane potential, mitochondrial reactive oxygen species production and mitochondria network organization. Accordingly, in immunocompetent mice, the tumor growth was accompanied by increased levels of the inflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-8, either in serum or in the heart tissue, together with a significant reduction of ventricular systolic function. The alterations of mitochondria and of microfilament system of cardiomyocytes, due to the systemic inflammation associated with cancer growth, could be responsible for remote cardiac injury and impairment of systolic function observed in vivo.  相似文献   

2.
Platinum drug-resistance in ovarian cancers mediated by anti-apoptotic proteins such as Bcl-xL is a major factor contributing to the chemotherapeutic resistance of recurrent disease. Consequently, concurrent inhibition of Bcl-xL in combination with chemotherapy may improve treatment outcomes for patients. Here, we develop a mathematical model to investigate the potential of combination therapy with ABT-737, a small molecule inhibitor of Bcl-xL, and carboplatin, a platinum-based drug, on a simulated tumor xenograft. The model is calibrated against in vivo experimental data, wherein xenografts established in mice were treated with ABT-737 and/or carboplatin on a fixed periodic schedule. The validated model is used to predict the minimum drug load that will achieve a predetermined level of tumor growth inhibition, thereby maximizing the synergy between the two drugs. Our simulations suggest that the infusion-duration of each carboplatin dose is a critical parameter, with an 8-hour infusion of carboplatin given weekly combined with a daily bolus dose of ABT-737 predicted to minimize residual disease. The potential of combination therapy to prevent or delay the onset of carboplatin-resistance is also investigated. When resistance is acquired as a result of aberrant DNA-damage repair in cells treated with carboplatin, drug delivery schedules that induce tumor remission with even low doses of combination therapy can be identified. Intrinsic resistance due to pre-existing cohorts of resistant cells precludes tumor regression, but dosing strategies that extend disease-free survival periods can still be identified. These results highlight the potential of our model to accelerate the development of novel therapeutics such as BH3 mimetics.  相似文献   

3.
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/DoxR cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.  相似文献   

4.
We assessed changes in the apoptosis-related genes BCL2, BAX, BCL2L12, FAS and CASPASE-3 in OVCAR-3 human ovarian cancer cells and BT-20 human breast cancer cells to provide an insight into the molecular mechanisms involved in the response of these cells to treatment with anticancer drugs and to assess their value as potential biomarkers of chemotherapy response in breast and ovarian cancer. Cells were treated with different chemotherapeutic drugs (cisplatin, carboplatin, doxorubicin, etoposide and taxol) and assessed for changes in the expression of apoptosis-related genes at the mRNA level. Total RNA was extracted, reverse-transcribed into cDNA and amplified by PCR using gene-specific primers. GAPDH was used as a housekeeping gene. Cytotoxicity was assessed by MTT assay. Both cancer cell lines responded differentially at the molecular level to the drug treatments. OVCAR-3 cells showed more pronounced sensitivity and changes compared to BT-20 cells at the mRNA level for different apoptosis-related genes, leading to cell and cancer type dependence in conjunction with drug dependence.  相似文献   

5.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells, increased the IC50 for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.  相似文献   

6.
The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type.  相似文献   

7.
The possibility of overcoming the multidrug resistance of human malignant cells by using doxorubicin conjugated to alpha-fetoprotein (AFP) was studied. It was shown that this type of antitumour drugs, penetrating the cell by receptor-mediated endocytosis with AFP as a vehicle, raises the sensitivity of the tumour cells that are resistant due to the expression of the multidrug resistance genemdr1. The sensitivity of antibiotic-resistant cell lines SKVLB (a human ovarian carcinoma) and MCF-7 AdrR (a human breast carcinoma) increased by 10- and 4-fold, respectively, when AFP-conjugated doxorubicin was used. The rationale of using human AFP-antitumour drug conjugates for the development of new chemotherapeutic approaches to cancer treatment is discussed.  相似文献   

8.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells, increased the IC50 for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.  相似文献   

9.
The effects of inhibition of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways and chemotherapeutic drugs on cell cycle progression and drug sensitivity were examined in cytokine-dependent FL5.12 hematopoietic cells. We examined their effects, as these cells resemble normal hematopoietic precursor cells as they do not exhibit “oncogene-addicted” growth, while they do display “cytokine-addicted” proliferation as cytokine removal resulted in apoptosis in greater than 80% of the cells within 48 h. When cytokine-dependent FL5.12 cells were cultured in the presence of IL-3, which stimulated multiple proliferation and anti-apoptotic cascades, MEK, PI3K and mTOR inhibitors transiently suppressed but did not totally inhibit cell cycle progression or induce apoptosis while chemotherapeutic drugs such as doxorubicin and paclitaxel were more effective in inducing cell cycle arrest and apoptosis. Doxorubicin induced a G1 block, while paclitaxel triggered a G2/M block. Doxorubicin was more effective in inducing cell death than paclitaxel. Furthermore the effects of doxorubicin could be enhanced by addition of MEK, PI3K or mTOR inhibitors. Cytokine-dependent cells which proliferate in vitro and are not “oncogene-addicted” may represent a pre-malignant stage, more refractory to treatment with targeted therapy. However, these cells are sensitive to chemotherapeutic drugs. It is important to develop methods to inhibit the growth of such cytokine-dependent cells as they may resemble the leukemia stem cell and other cancer initiating cells. These results demonstrate the enhanced effectiveness of targeting early hematopoietic progenitor cells with combinations of chemotherapeutic drugs and signal transduction inhibitors.  相似文献   

10.
Current clinical studies support the role of neoadjuvant cisplatin administration prior to curative radiotherapy or radio-chemotherapy for advanced head and neck cancer. Nevertheless, based on locoregional control rates the studies indicate that there is need to redesign cisplatin-based schedules for induction chemotherapy, thus the ideal treatment regimen is yet to be established. While the pharmacokinetics/dynamics of daily cisplatin regimens correspond better with the cell cycle properties of head and neck cancers, weekly regimens are more commonly employed in clinics due to lower complications. Yet, the high rates of adverse events induced by current cisplatin schedules often represent a limiting factor in the overall success of the treatment.The aim of the present paper was to model the pharmacodynamic properties of cisplatin and to simulate and compare various neoadjuvant treatment regimens in regards to their effect on tumour control. Treatment simulation was undertaken on a virtual squamous cell carcinoma of the head and neck, previously grown by computer-based probabilistic methods.The model suggests that a novel cisplatin treatment, given every three days is comparable, in regards to tumour control, with the daily administration and more effective than the weekly regimen in neoadjuvant settings. Endpoints were assessed in terms of cell population regrowth after treatment cessation followed by two weeks of unperturbed growth. Simulation of two weeks low-dose daily cisplatin followed by two weeks ‘free growth’ lead to 15% population regrowth, while weekly high-dose cisplatin over three weeks, followed by two weeks unperturbed growth resulted in 52% tumour cell regrowth. The proposed novel schedule of low-dose third-daily cisplatin gives closer tumour regrowth to daily administration (27% versus 15%) than to the weekly regimen (52%) and also similar cell distribution along the cell cycle as the daily one, suggesting therefore comparable response to subsequent treatment.The advantage of using a third-daily drug regimen would be a decrease in normal tissue complication rates compared to daily administration and possibly an increase in tumour control when compared to the ‘conventional’ weekly cisplatin delivery.  相似文献   

11.

Background

Recent studies suggested that induction of epithelial-mesenchymal transition (EMT) might confer both metastatic and self-renewal properties to breast tumor cells resulting in drug resistance and tumor recurrence. TGFβ is a potent inducer of EMT and has been shown to promote tumor progression in various breast cancer cell and animal models.

Principal Findings

We report that chemotherapeutic drug doxorubicin activates TGFβ signaling in human and murine breast cancer cells. Doxorubicin induced EMT, promoted invasion and enhanced generation of cells with stem cell phenotype in murine 4T1 breast cancer cells in vitro, which were significantly inhibited by a TGFβ type I receptor kinase inhibitor (TβRI-KI). We investigated the potential synergistic anti-tumor activity of TβR1-KI in combination with doxorubicin in animal models of metastatic breast cancer. Combination of Doxorubicin and TβRI-KI enhanced the efficacy of doxorubicin in reducing tumor growth and lung metastasis in the 4T1 orthotopic xenograft model in comparison to single treatments. Doxorubicin treatment alone enhanced metastasis to lung in the human breast cancer MDA-MB-231 orthotopic xenograft model and metastasis to bone in the 4T1 orthotopic xenograft model, which was significantly blocked when TβR1-KI was administered in combination with doxorubicin.

Conclusions

These observations suggest that the adverse activation of TGFβ pathway by chemotherapeutics in the cancer cells together with elevated TGFβ levels in tumor microenvironment may lead to EMT and generation of cancer stem cells resulting in the resistance to the chemotherapy. Our results indicate that the combination treatment of doxorubicin with a TGFβ inhibitor has the potential to reduce the dose and consequently the toxic side-effects of doxorubicin, and improve its efficacy in the inhibition of breast cancer growth and metastasis.  相似文献   

12.
P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.  相似文献   

13.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

14.
The clinical management of advanced hepatocellular carcinoma (HCC) is challenging due to its resistance to chemotherapy. In our work, we demonstrate that an antiparasitic drug atovaquone at clinically relevant concentrations is active against chemoresistant HCC. We show that atovaquone inhibits proliferation and induces apoptosis in not only HCC parental cells but also cells exposed to long time culture of chemotherapeutic agents. Consistently, the combination of atovaquone with cisplatin or doxorubicin achieved remarkably greater efficacy than single drug alone. Mechanistically, atovaquone overcomes HCC chemoresistance via supressing mitochondrial respiration and inducing oxidative stress. Atovaquone but not cisplatin or doxorubicin is ineffective in mitochondrial respiration-deficient ρ0, confirming mitochondria as a specific upstream target of atovaquone. Interestingly, we show that prolonged exposure of HCC cells to chemotherapeutic agents induces higher level of mitochondrial respiration, suggesting that tumors which develop chemoresistance after chemotherapy might be more dependent on mitochondrial respiration than primary tumors and explaining the sensitivity of chemoresistant HCC cells to atovaquone. We further show that atovaquone at tolerable does significantly inhibits chemoresistant HCC growth in mice throughout the duration of treatment. In line with in vitro data, we observe the increased oxidative stress in atovaquone-treated tumors. Our findings highlight the dependency of chemoresistant HCC on mitochondrial respiration and demonstrate that atovaquone is a potential drug to overcome HCC chemoresistance.  相似文献   

15.
16.
Chemoresistance is closely related to the therapeutic effect and prognosis in breast cancer patients. Increasing evidences demonstrated that RNA binding proteins (RBPs) have notable roles in regulating cancer cell proliferation, metastasis and chemotherapeutic sensitivity. RNA binding motif single stranded interacting protein 2 (RBMS2), an RBP, has been considered to be a tumor suppressor in several cancers. However, its role of doxorubicin sensitivity in breast cancer patients has not yet been fully revealed. Here, we performed doxorubicin cytotoxicity assay, flow cytometry and mouse xenograft model to examine the influence of RBMS2 on doxorubicin sensitization in vitro and in vivo. RIP assay and dual-luciferase reporter assay were performed to explore the relationship between RBMS2 and BMF. Our data demonstrated that upregulation of RBMS2 in breast cancer cells could enhance sensitivity to doxorubicin and promote apoptosis in the presence of doxorubicin, while inhibition of RBMS2 showed an opposite trend. Moreover, this chemosensitizing effect of RBMS2 could be reversed by the inhibition of Bcl-2 modifying factor (BMF). RBMS2 positively regulated BMF expression and increased BMF-induced expression of (cleaved) caspase 3, (cleaved) caspase 9 and poly (ADP-Ribose) polymerase (PARP). These results uncovered a novel mechanism for RBMS2 in the sensibilization of doxorubicin, suggesting that RBMS2 may act as a potential therapeutic target for drug-resistant breast cancer.  相似文献   

17.
Sphingosine-1-phosphate (S1P) is a potent lysolipid involved in a variety of biological responses important for cancer progression. Therefore, we investigated the role of sphingosine kinase type 1 (SphK1), the enzyme that makes S1P, in the motility, growth, and chemoresistance of MCF-7 breast cancer cells. Epidermal growth factor (EGF), an important growth factor for breast cancer progression, activated and translocated SphK1 to plasma membrane. SphK1 was required for EGF-directed motility. Downregulation of SphK1 in MCF-7 cells reduced EGF- and serum-stimulated growth and enhanced sensitivity to doxorubicin, a potent chemotherapeutic agent. These results suggest that SphK1 may be critical for growth, metastasis and chemoresistance of human breast cancers.  相似文献   

18.
Adjuvant therapy has evolved to become the standard care of colon cancer, but the tumor capability of activating effective mechanisms of defence against both chemical and physical cytotoxic agents represents a serious obstacle to the successful therapy. Furthermore, the possibility to have an assay useful to measure the drug sensitivity of tumor cells could be of a great importance. As primary human colon cancer cultures from fresh tumor are technically difficult to obtain, experiments with human cancer cell lines remain essential to explore new adjuvant chemotherapy drugs, to investigate the individual responsiveness to the known agents, and particularly to clarify how these chemotherapeutic agents could be used in maximizing outcomes. In the present study we evaluate the cytotoxic effects of 5-fluorouracil (5-FU) and oxaliplatin (OHP) and of their pharmacological interaction in three human colon cancer cell lines (WiDr, HT-29 and SW620), by using an ATP luminescence assay (ATPlite; Perkin Elmer), displaying high sensitivity, linearity and reproducibility. Cell cycle, apoptosis and CD44 expression were investigated with flow cytometry. Our results show that the drug combinations inhibited the cell growth more than each drug alone in all colorectal cancer cell lines. Interestingly, the sequential exposure of OHP and 5-FU resulted in the most cytotoxic effect in all colon cancer cell lines, when compared to the simultaneous one. Our results focus on the powerful cytotoxic effect of 5-FU-OHP combination, when used in sequential exposure, suggesting interesting implications for a rational use of 5-FU, OHP combination in colon-rectal cancer therapy.  相似文献   

19.
20.
The effects of inhibition of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways and chemotherapeutic drugs on cell cycle progression and drug sensitivity were examined in cytokine-dependent FL5.12 hematopoietic cells. We examined their effects, as these cells resemble normal hematopoietic precursor cells as they do not exhibit “oncogene-addicted” growth, while they do display “cytokine-addicted” proliferation as cytokine removal resulted in apoptosis in greater than 80% of the cells within 48 h. When cytokine-dependent FL5.12 cells were cultured in the presence of IL-3, which stimulated multiple proliferation and anti-apoptotic cascades, MEK, PI3K and mTOR inhibitors transiently suppressed but did not totally inhibit cell cycle progression or induce apoptosis while chemotherapeutic drugs such as doxorubicin and paclitaxel were more effective in inducing cell cycle arrest and apoptosis. Doxorubicin induced a G1 block, while paclitaxel triggered a G2/M block. Doxorubicin was more effective in inducing cell death than paclitaxel. Furthermore the effects of doxorubicin could be enhanced by addition of MEK, PI3K or mTOR inhibitors. Cytokine-dependent cells which proliferate in vitro and are not “oncogene-addicted” may represent a pre-malignant stage, more refractory to treatment with targeted therapy. However, these cells are sensitive to chemotherapeutic drugs. It is important to develop methods to inhibit the growth of such cytokine-dependent cells as they may resemble the leukemia stem cell and other cancer initiating cells. These results demonstrate the enhanced effectiveness of targeting early hematopoietic progenitor cells with combinations of chemotherapeutic drugs and signal transduction inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号