首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trade-offs between developing body parts may contribute to variation in allometric scaling relationships in a variety of taxa. Experimental evidence indicates that both circulating levels of juvenile hormone (JH) and sensitivities of developing body parts to JH can influence morphology in polyphenic insects. However, the extent to which JH may regulate both the development of traits that scale continuously with body size and trade-offs between these traits is largely unknown. Here, I present evidence that the JH analog methoprene applied to final instar larvae of a stalk-eyed fly (Cyrtodiopsis dalmanni) can induce males to produce larger eye-stalks relative to their body size. Examination of testis growth, sperm transfer, and egg maturation indicates that JH induces a trade-off between eye-span and gonad development in adult males, but not females. Age at sexual maturity was unaffected by larval JH applications to either sex. Collectively, these results are consistent with JH-mediated allocation of resources to eye-span at the expense of testes, and indicate potential costs for the production of an exaggerated trait.  相似文献   

3.
The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure) remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer), juvenile hormone (JH) titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects.  相似文献   

4.
Phenoloxidase (PO) production can be used as an indicator of pathogen defence in insects. The geographical mosaic of coevolution implies that traits associated with pathogen defence will vary across a geographical range. Bateman's principle implies that the benefit of increased defence levels is greater for females than males. To test both of these hypotheses, we sampled four populations of Japanese beetles, Popillia japonica, across Vermont: two were from locations using biological pest control, and two locations did not use biocontrol. We quantified defence levels (PO) and parasite resistance in males and females from each population. Populations from areas with biocontrol exhibited greater PO production, females produced more PO, populations with higher levels of PO suffered less mortality from pathogen exposure, and PO levels positively correlate with increased mortality in the absence of parasitism. Results support the geographical mosaic of coevolution and the implications of Bateman's principle.  相似文献   

5.
6.
Sexual dimorphisms (SDs) have evolved in mammals to assure greater reproductive success for individuals, usually males. Secondary sexual characteristics (SSC) developed to further this objective, tending to be more pronounced in species which are polygynous, diurnal and open-habitat dwellers. Sexual selection has underpinned many of these changes, which are not necessarily advantageous for individual survival. Domestication has affected certain characteristics, more in terms of their quantitative rather than qualitative expression. However, restrictions imposed by domestication can also affect behaviors such as isolation and post-natal bonding while artificial selection can, by focusing on certain traits, cause unforeseen effects in genetically linked traits, which, when sex-specific or sex-linked, can be reflected in SD. On a global scale, environmental changes can have important phylogenetic implications for species which rely upon environmental cues for activities as migration, hibernation and breeding, especially when SD occurs in response to such cues. Understanding the evolutionary rationale behind the development of SDs, as well as the dynamics which occur at the interface between natural and artificial selection, allows positive insights into areas as diverse as wildlife preservation and livestock management. For both, greatest "success" should be achieved when artificial selection occurs in harmony with natural selection within a supportive environment. Thus the aim of this review is to discuss current knowledge relating to the evolution, benefits and costs of mammalian sexual dimorphisms and, where possible, draw conclusions that might be beneficial for the husbandry and propagation of mammals today.  相似文献   

7.
8.
9.
Summary 1. Sex differences in the control of gonadotropin secretion and reproductive functions are a distinct characteristic in all mammalian species, including humans. Ovulation and cyclicity are among the most distinct neuroendocrine markers of female brain differentiation, along with sex behavioral traits that are also evident in different species.2. The luteinizing hormone-releasing hormone (LHRH) neuronal system is the prime regulator of neuroendocrine events leading to ovulation and hormonal changes during the menstrual cycle and, as such, is the potential site where many of these sex differences may be expressed or, at the very least, integrated. However, until recently, no significant differences were seen in LHRH neurons between male and female brains, including cell number, pattern of distribution, and expression of message or peptide (LHRH) levels.3. Recently, we reported that galanin (GAL), a brain-gut peptide, is coexpressed in LHRH neurons and that this coexpression is sexually dimorphic. When GAL is used as a marker for this neuronal system, it is clear that estradiol as well as progesterone profoundly affects the message and expression of the peptide and that this regulation, at least in rodents, is neonatally predetermined by gonadal steroid imprinting.4. Changes in GAL expression and message can also be seen at puberty, during pregnancy and lactation, and in aging, all situations that affect the function of the LHRH neuronal system. Using an immortalized LHRH neuronal cell line (GT1) we have recently observed that these neurons express estrogen receptor (ER) and GAL and that estradiol can increase the expression of GAL, indicating functional activation of the endogenous ER.  相似文献   

10.
Sexual dimorphism in immune function is a common pattern in vertebrates and also in a number of invertebrates. Most often, females are more 'immunocompetent' than males. The underlying causes are explained by either the role of immunosuppressive substances, such as testosterone, or by fundamental differences in male and female life histories. Here, we investigate some of the main predictions of the immunocompetence handicap hypothesis (ICHH) in a comparative framework using mammals. We focus specifically on the prediction that measures of sexual competition across species explain the observed patterns of variation in sex-specific immunocompetence within species. Our results are not consistent with the ICHH, but we do find that female mammals tend to have higher white blood cell counts (WBC), with some further associations between cell counts and longevity in females. We also document positive covariance between sexual dimorphism in immunity, as measured by a subset of WBC, and dimorphism in the duration of effective breeding. This is consistent with the application of 'Bateman's principle' to immunity, with females maximizing fitness by lengthening lifespan through greater investment in immune defences. Moreover, we present a meta-analysis of insect immunity, as the lack of testosterone in insects provides a means to investigate Bateman's principle for immunity independently of the ICHH. Here, we also find a systematic female bias in the expression of one of the two components of insect immune function that we investigated (phenoloxidase). From these analyses, we conclude that the mechanistic explanations of the ICHH lack empirical support. Instead, fitness-related differences between the sexes are potentially sufficient to explain many natural patterns in immunocompetence.  相似文献   

11.
Socio-bioenergetics and sexual dimorphism in primates   总被引:2,自引:0,他引:2  
Socio-bioenergetics is presented as a practical method of estimating energy budgets of primates in a social context. Energy budgets are estimated on the basis of behavioral observations and a series of empirical formulae, which consider body weight, activity, and reproductive status. Data on a captive colony of Sykes' monkeys and baboons are incorporated as illustrations of the possible effects of group composition, body size, reproductive status, and activity patterns on energy requirements.Supported by the Wenner-Gren Foundation for Anthropological Research Incorporated and the National Science Foundation Grant GU-1598.  相似文献   

12.
Sexually dimorphic behaviors are likely to involve neural pathways that express the androgen receptor (AR). We have genetically modified the AR locus to visualize dimorphisms in neuronal populations that express AR. Analysis of AR-positive neurons reveals both known dimorphisms in the preoptic area of the hypothalamus and the bed nucleus of the stria terminalis as well as novel dimorphic islands in the basal forebrain with a clarity unencumbered by the vast population of AR-negative neurons. This genetic approach allows the visualization of dimorphic subpopulations of AR-positive neurons along with their projections and may ultimately permit an association between neural circuits and specific dimorphic behaviors.  相似文献   

13.
In comparative studies of sexual size dimorphism (SSD), the methods used to quantify dimorphism are controversial. SSD is commonly expressed as a ratio between species mean values of males and females, such as M/F or (M-F)/([M+F]/2), but a number of investigators have suggested that ratios should not be used, mainly because their distributions usually violate the assumptions of parametric statistical tests, or because they lead to spurious relationships that invalidate the interpretation and statistical significance of regressions and correlations. As an alternative to ratios, the comparative study of SSD can be conducted by a combination of regression with sex-specific data and residuals from this regression. Twenty-five data sets were selected from the literature and used to duplicate a variety of statistical procedures commonly employed in studies of SSD. All analyses were repeated with five different ratios and with methods that avoid the calculation of any ratios. These data and a review of the statistical properties of ratios and residuals indicate that: (1) most of the ratios used in the SSD literature are unnecessary, and several commonly used ratios are statistically inferior to others. Only two ratios are needed, one on a logarithmic scale and one on a linear scale; (2) there is no problem with spurious correlation or non-normality when ratios are used in several types of statistical procedures commonly employed in studies of SSD; (3) residuals cannot replace ratios for the evaluation of many questions regarding the pattern of SSD among species; and (4) residuals usually are used incorrectly, leading to misspecified regression equations. Most of the questions for which residuals are used should be addressed by multiple regression. These results apply to studies using comparative methods with or without adjustments for phylogenetic effects.  相似文献   

14.
15.
Moczek AP 《Heredity》2006,97(3):168-178
A major challenge in evolutionary developmental biology is to understand how developmental evolution on the level of populations and closely related species relates to macroevolutionary transitions and the origin of evolutionary novelty. Here, I review the genetic, developmental, endocrine, and ecological basis of beetle horns, a morphological novelty that exhibits remarkable diversity both below and above the species level. Integrating from a variety of approaches three major insights emerge: the origin of beetle horns relied at least in part on the redeployment of already existing genetic, developmental and endocrine mechanisms. At the same time little to no phylogenetic distance appeared to have been necessary for the evolution of diverse modifier mechanisms that permit substantial modulation of trait expression at different time points during development in different species, sexes, alternative male morphs or even different tissue regions of the same individual. Lastly, at least a subset of these modifier mechanisms can evolve rapidly in geographically isolated populations, apparently driven by relatively simple, and probably ubiquitous, changes in ecological conditions. I discuss the implications of these results for our understanding of the genesis of morphological novelty and diversity.  相似文献   

16.
17.
Studies of sexual dimorphism have traditionally focused on the static differences in size and shape between adult males and females. In this paper, I suggest that an investigation of the ontogenetic bases of sexual dimorphism can provide new insights and information unobtainable from studies concerned only with adult endpoints. While growth is often viewed as simply the developmental pathway utilized to attain final adult size and shape, we must recognize that it is the entire pattern of sex-differentiated growth, and not merely the adult endpoints, which is adaptive and the target of natural selection. The importance of an ontogenetic approach to the analysis of sexual dimorphism is also demonstrated by the fact that a given morphologicalresult (e.g., a certain degree of adult weight dimorphism) may be attained by very different developmentalprocesses, signalling selection for quite different factors. The need to analyze the ontogenetic bases of sexual dimorphism in size and shape has recently been recognized by Jarman, in his study of dimorphism in large terrestrial herbivores. Here I combine aspects of Jarman’s approach with those of allometry and heterochrony in an analysis of sexual dimorphism in selected anthropoid primates. It is demonstrated that although all dimorphic anthropoids appear to be characterized by somebimaturism, the degree varies significantly. Marked weight dimorphism in certain species is primarily produced by an increased differentiation of female and male growthrates, while in other species the primary change involves differences in thetime or duration of growth between the sexes. These variations are illustrated with anthropoid genera such asMiopithecus, Cercopithecus, Erythrocebus, Macaca, Papio, Pan, andGorilla. It is suggested that additional ontogenetic investigations of other anthropoids will help clarify some of the socioecological bases of this variation in the ways of attaining an adult dimorphic state. This will contribute to our understanding of the complex factors underlying and producing sexual dimorphism in primates and other mammals.  相似文献   

18.

Background  

How novel morphological traits originate and diversify represents a major frontier in evolutionary biology. Horned beetles are emerging as an increasingly popular model system to explore the genetic, developmental, and ecological mechanisms, as well as the interplay between them, in the genesis of novelty and diversity. The horns of beetles originate during a rapid growth phase during the prepupal stage of larval development. Differential growth during this period is either implicitly or explicitly assumed to be the sole mechanism underlying differences in horn expression within and between species. Here I focus on male horn dimorphisms, a phenomenon at the center of many studies in behavioral ecology and evolutionary development, and quantify the relative contributions of a previously ignored developmental process, pupal remodeling, to the expression of male dimorphism in three horned beetle species.  相似文献   

19.
Analysis of facial dimensions of 86 young adults and their 76 parents indicates that a disproportionate sexual dimorphism exists in the ramus of the mandible, demonstrating a regional difference in growth response. The male ramus is on the average 14% longer than the female ramus, whereas other facial dimensions approximate an 8% sex difference. The findings have relevance to the analysis of skeletal remains and suggest the desirability of age specific discriminant function analysis for the sexing of adult mandibles.  相似文献   

20.
Body size and shape affect thermoregulatory properties of organisms, and in turn are believed to have shaped macroevolutionary patterns of morphological diversity across many taxa. However, it is less clear whether thermoregulation plays a role in shaping intraspecific morphological diversity such as sexual dimorphisms or the conditional expression of exaggerated secondary sexual traits. Here, we investigate individual thermoregulatory properties in two species of horned beetles that share similar ecologies and body size ranges, but differ substantially in degree of sexual and male dimorphism. We find that intraspecific variation in body size had an unexpectedly large effect on thermal preference behavior and the ability to passively regulate body temperature. Furthermore, we find that the presence or absence of exaggerated secondary sexual traits dramatically altered thermal preference behavior, consistent with a thermoregulatory cost of horn possession. Lastly, we show that the increase in surface area associated with the expression of enlarged horns is, by itself, insufficient to account for the radically altered thermoregulatory behavior observed in horn-bearing males, and discuss possible alternative, physiological explanations. These findings are among the first to link intra-and interspecific variation in body- and weapon size to thermal preferences within and between insect species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号