首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inositol 1,4,5-trisphosphate (Ins P3) 3-kinase catalyzes the ATP-dependent phosphorylation of Ins P3 to Inositol 1,3,4,5-tetrakisphosphate (Ins P4). Ca2+/calmodulin (CaM)-sensitivity of Ins P3 3-kinase was measured in the crude soluble fraction from rat brain and different anatomic regions of bovine brain. Kinase activity was inhibited in the presence of EGTA (free Ca2+ below 1 nM) as compared to Ca2+ (10 microM free Ca2+) or Ca2+ (10 microM free Ca2+) and CaM (1 microM). Ca2+-sensitivity was also seen for the cAMP phosphodiesterase measured under the same assay conditions, but was not for the Ins P3 5-phosphatase. DEAE-cellulose chromatography of the soluble fraction of rat brain or bovine cerebellum resolved a Ca2+/CaM-sensitive Ins P3 3-kinase (maximal stimulation at 1 microM Ins P3 substrate level was 2.0-3.0 fold).  相似文献   

2.
D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] 3-kinase, the enzyme responsible for production of D-myo-inositol 1,3,4,5-tetrakisphosphate, was activated 3- to 5-fold in homogenates of rat brain cortical slices after incubation with carbachol. The effect was reproduced in response to UTP in Chinese hamster ovary (CHO) cells overexpressing Ins(1,4,5)P3 3-kinase A, the major isoform present in rat and human neuronal cells. In ortho-32P-labelled cells, the phosphorylated 53 kDa enzyme could be identified after receptor activation by immunoprecipitation. The time course of phosphorylation was very similar to that observed for carbachol (or UTP)-induced enzyme activation. Enzyme phosphorylation was prevented in the presence of okadaic acid. Calmodulin (CaM) kinase II inhibitors (i.e. KN-93 and KN-62) prevented phosphorylation of Ins(1,4,5)P3 3-kinase. Identification of the phosphorylation site in transfected CHO cells indicated that the phosphorylated residue was Thr311. This residue of the human brain sequence lies in an active site peptide segment corresponding to a CaM kinase II-mediated phosphorylation consensus site, i.e. Arg-Ala-Val-Thr. The same residue in Ins(1,4,5)P3 3-kinase A was also phosphorylated in vitro by CaM kinase II. Phosphorylation resulted in 8- to 10-fold enzyme activation and a 25-fold increase in sensitivity to the Ca2+:CaM complex. In this study, direct evidence is provided for a novel regulation mechanism for Ins(1,4,5)P3 3-kinase (isoform A) in vitro and in intact cells.  相似文献   

3.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase catalyzes the production of D-myo-inositol 1,3,4,5-tetrakisphosphate from the second messenger Ins (1,4,5)P3. Transient and okadaic acid-sensitive activation of Ins(1,4,5)P3 3-kinase by 8-10-fold is observed in homogenates prepared from rat cortical astrocytes after incubation with either carbachol or UTP. 12-O-Tetradecanoylphorbol-13-acetate provokes the activation of Ins(1,4,5)P3 3-kinase by 2-fold in both cell systems. The kinase was purified by calmodulin-Sepharose from the two cell systems. Enzyme activity corresponding to the silver-stained 88-kDa protein could be regenerated after SDS-polyacrylamide gel electrophoresis. Antibodies to two distinct peptides chosen in the primary structure of human Ins(1,4,5)P3 3-kinase B recognized the astrocytic native isoform. In [32P]orthophosphate-preincubated cells, a major phosphorylated 88-kDa enzyme could be purified and identified in cells in response to receptor activation or 12-O-tetradecanoylphorbol-13-acetate treatment. Calmodulin kinase II inhibitors (i.e. KN-93 and KN-62) and a protein kinase C inhibitor (i.e. calphostin C) prevented the phosphorylation of the 88-kDa isoenzyme. In addition to enzyme activation, a redistribution of Ins(1,4,5)P3 3-kinase from soluble to particulate fraction of astrocytes was observed. In vitro phosphorylation of the purified enzyme by calmodulin kinase II and protein kinase C added together resulted in a maximal 60-70-fold activation.  相似文献   

4.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), an intracellular second messenger produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate, interacts with cytoplasmic membrane structures to elicit the release of stored Ca2+. Ins(1,4,5)P3-induced Ca2+ mobilization is mediated through high affinity receptor binding sites; however, the biochemical mechanism coupling receptor occupation with Ca2+ channel opening has not been identified. In studies presented here, we examined the effects of naphthalenesulfonamide calmodulin antagonists, W7 and W13, and a new selective antagonist, CGS 9343B, on Ca2+ mobilization stimulated by Ins(1,4,5)P3 in neoplastic rat liver epithelial (261B) cells. Intact fura-2 loaded cells stimulated by thrombin, a physiological agent that causes phosphatidylinositol 4,5-bisphosphate hydrolysis and Ins (1,4,5)P3 release, responded with a rise in cytoplasmic free Ca2+ levels that was dose dependently inhibited by W7(Ki = 25 microM), W13 (Ki = 45 microM), and CGS 9343B (Ki = 110 microM). Intracellular Ca2+ release stimulated by the addition of Ins(1,4,5)P3 directly to electropermeabilized 261B cells was similarly inhibited by pretreatment with anti-calmodulin agents. W7 and CGS 9343B, which potently blocked Ca2+/calmodulin-dependent protein kinase, had no significant effect on protein kinase A or C in dose range required for complete inhibition of Ca2+ mobilization. Ca2+ release channels and Ca2+-ATPase pump activity were also unaffected by calmodulin antagonist treatment. These results indicate that calmodulin is tightly associated with the intracellular membrane mechanism coupling Ins(1,4,5)P3 receptors to Ca2+ release channels  相似文献   

5.
J A Cox 《Federation proceedings》1984,43(15):3000-3004
khe conformational and functional events in calmodulin (CaM) are disproportionate to the mean saturation by Ca2+. The enhancement of intrinsic tyrosine fluorescence closely follows the appearance of species CaM X Can greater than or equal to 1; the exposure of the hydrophobic patch at the surface of CaM coincides with the appearance of CaM X Can greater than or equal to 2. For the activation of four different target enzymes, i.e., brain phosphodiesterase and adenylate cyclase, red blood cell Ca,Mg-ATPase, and skeletal muscle phosphorylase b kinase, CaM X Can greater than or equal to 3 is required. The different enzymes have the same affinity for the active species. The direct interaction of CaM with Ca2+ and phosphorylase b kinase has been analyzed according to the theory of energy coupling: whereas the first two stoichiometric calcium-binding constants in the complex are not significantly different from those of free CaM, the third Ca2+ binds with an affinity at least 10(6)-fold higher to enzyme-bound CaM than to free CaM, which corresponds to a free energy coupling of -7 kcal/mol CaM. The similarities in the activation mechanism of different enzymes suggest the existence of one unique CaM-binding domain. The characteristics of the interaction between CaM and melittin, a small amphiphatic cytotoxin, led us to propose melittin as a model for such a CaM-binding domain.  相似文献   

6.
Turkey erythrocytes contain soluble and particulate kinase activities which catalyse the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The particle-bound activity accounts for approximately one-quarter of the total cellular Ins(1,4,5)P3 kinase, when assayed at a [Ca2+] of 10 nM. The particle-bound Ins(1,4,5)P3 kinase is not washed from the membrane by 0.6 M-KCl, yet may be solubilized by a variety of detergents. This suggests that it is an intrinsic membrane protein. The product of the membrane-bound Ins(1,4,5)P3 kinase is inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], identifying the enzyme as an Ins(1,4,5)P3 3-kinase. In the presence of calmodulin, the membrane-associated Ins(1,4,5)P3 3-kinase is activated as [Ca2+] is increased over the range 0.2-1.0 microM. Under these conditions, the rates of dephosphorylation of Ins(1,3,4,5)P4 and Ins(1,4,5)P3 by phosphatases in the membrane fraction are unchanged.  相似文献   

7.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) 3-kinases (IP(3)Ks) are a group of calmodulin-regulated inositol polyphosphate kinases (IPKs) that convert the second messenger Ins(1,4,5)P(3) into inositol 1,3,4,5-tetrakisphosphate. However, what they contribute to the complexities of Ca(2+) signaling, and how, is still not fully understood. In this study, we have used a simple Ca(2+) imaging assay to compare the abilities of various Ins (1,4,5)P(3)-metabolizing enzymes to regulate a maximal histamine-stimulated Ca(2+) signal in HeLa cells. Using transient transfection, we overexpressed green fluorescent protein-tagged versions of all three mammalian IP(3)K isoforms, including mutants with disrupted cellular localization or calmodulin regulation, and then imaged the Ca(2+) release stimulated by 100 microm histamine. Both localization to the F-actin cytoskeleton and calmodulin regulation enhance the efficiency of mammalian IP(3)Ks to dampen the Ins (1,4,5)P(3)-mediated Ca(2+) signals. We also compared the effects of the these IP(3)Ks with other enzymes that metabolize Ins(1,4,5)P(3), including the Type I Ins(1,4,5)P(3) 5-phosphatase, in both membrane-targeted and soluble forms, the human inositol polyphosphate multikinase, and the two isoforms of IP(3)K found in Drosophila. All reduce the Ca(2+) signal but to varying degrees. We demonstrate that the activity of only one of two IP(3)K isoforms from Drosophila is positively regulated by calmodulin and that neither isoform associates with the cytoskeleton. Together the data suggest that IP(3)Ks evolved to regulate kinetic and spatial aspects of Ins (1,4,5)P(3) signals in increasingly complex ways in vertebrates, consistent with their probable roles in the regulation of higher brain and immune function.  相似文献   

8.
An enzyme which catalyses the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was purified approx. 180-fold from rat brain cytosol by (NH4)2SO4 precipitation, chromatography through hydroxyapatite, anion-exchange fast protein liquid chromatography and gel-filtration chromatography. Gel filtration on Sepharose 4B CL gives an Mr of 200 x 10(3) for the native enzyme. The inositol tetrakisphosphate (InsP4) produced by the enzyme has the chromatographic, chemical and metabolic properties of Ins(1,3,4,5)P4. Ins(1,4,5)P3 3-kinase displays simple Michaelis-Menten kinetics for both its substrates, having Km values of 460 microM and 0.44 microM for ATP and Ins(1,4,5)P3 respectively. When many of the inositol phosphates known to occur in cells were tested, only Ins(1,4,5)P3 was a substrate for the enzyme; the 2,4,5-trisphosphate was not phosphorylated. Inositol 4,5-bisphosphate and glycerophosphoinositol 4,5-bisphosphate were phosphorylated much more slowly than Ins(1,4,5)P3. CTP, GTP and adenosine 5'-[gamma-thio]triphosphate were unable to substitute for ATP. When assayed under conditions of first-order kinetics, Ins(1,4,5)P3 kinase activity decreased by about 40% as the [Ca2+] was increased over the physiologically relevant range. This effect was insensitive to the presence of calmodulin and appeared to be the result of an increase in the Km of the enzyme for Ins(1,4,5)P3. Preincubation with ATP and the purified catalytic subunit of cyclic AMP-dependent protein kinase did not affect the rate of phosphorylation of Ins(1,4,5)P3 when the enzyme was assayed at saturating concentrations of Ins(1,4,5)P3 or at concentrations close to its Km for this substrate.  相似文献   

9.
Dephosphorylation of neuromodulin by calcineurin   总被引:8,自引:0,他引:8  
Neuromodulin (p57, GAP-43, F1, B-50) is a major neural-specific, calmodulin binding protein found in brain, spinal cord, and retina that is associated with membranes. Phosphorylation of neuromodulin by protein kinase C causes a significant reduction in its affinity for calmodulin (Alexander, K. A., Cimler, B. M., Meirer, K. E., and Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). It has been proposed that neuromodulin may function to bind and concentrate calmodulin at specific sites within neurons and that activation of protein kinase C causes the release of free calmodulin at high concentrations near its target proteins. It was the goal of this study to determine whether bovine brain contains a phosphoprotein phosphatase that will utilize phosphoneuromodulin as a substrate. Phosphatase activity for phosphoneuromodulin was partially purified from a bovine brain extract using DEAE-Sephacel and Sephacryl S-200 gel filtration chromatography. The neuromodulin phosphatase activity was resolved into two peaks by Affi-Gel Blue chromatography. One of these phosphatases, which represented approximately 60% of the total neuromodulin phosphatase activity, was tentatively identified as calcineurin by its requirement for Ca2+ and calmodulin (CaM) and inhibition of its activity by chlorpromazine. Therefore, bovine brain calcineurin was purified to homogeneity and examined for its phosphatase activity against bovine phosphoneuromodulin. Calcineurin rapidly dephosphorylated phosphoneuromodulin in the presence of micromolar Ca2+ and 3 microM CaM. The apparent Km and Vmax for the dephosphorylation of neuromodulin, measured in the presence of micromolar Ca2+ and 2 microM CaM, were 2.5 microM and 70 nmol Pi/mg/min, respectively, compared to a Km and Vmax of 4 microM and 55 nmol Pi/mg/min, respectively, for myosin light chain under the same conditions. Dephosphorylation of neuromodulin by calcineurin was stimulated 50-fold by calmodulin in the presence of micromolar free Ca2+. Half-maximal stimulation was observed at a calmodulin concentration of 0.5 microM. We propose that phosphoneuromodulin may be a physiologically important substrate for calcineurin and that calcineurin and protein kinase C may regulate the levels of free calmodulin available in neurons.  相似文献   

10.
S H Ryu  S Y Lee  K Y Lee  S G Rhee 《FASEB journal》1987,1(5):388-393
Inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) is an important second-messenger molecule that mobilizes Ca2+ from intracellular stores in response to the occupancy of receptor by various Ca2+-mobilizing agonists. The fate of Ins-1,4,5-P3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P3 to Ins-1,3,4,5-P4, whereas the latter forms Ins-1,4-P2. Recent studies suggest that Ins-1,3,4,5-P4 might modulate the entry of Ca2+ from an extracellular source. In the current report, we describe the partial purification of the 3-kinase [approximately 400-fold purified, specific activity = 0.12 mumol/(min.mg)] from the cytosolic fraction of bovine brain and studies of its catalytic properties. We found that the 3-kinase activity is significantly activated by the Ca2+/calmodulin complex. Therefore, we propose that Ca2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P3 forms a complex with calmodulin, and that the Ca2+/calmodulin complex stimulates the conversion of Ins-1,4,5-P3, an intracellular Ca2+ mobilizer, to Ins-1,3,4,5-P4, an extracellular Ca2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3-32P]Ins-1,3,4,5-P4 and [gamma-32P]ATP by thin-layer chromatography. Using this new assay method, we evaluated kinetic parameters (Km for ATP = 40 microM, Km for Ins-1,4,5-P3 = 0.7 microM, Ki for ADP = 12 microM) and divalent cation specificity (Mg2+ much greater than Mn2+ greater than Ca2+) for the 3-kinase. Studies with various inositol polyphosphates indicate that the substrate-binding site is quite specific to Ins-1,4,5-P3. Nevertheless, Ins-2,4,5-P3 could be phosphorylated at a velocity approximately 1/20-1/30 that of Ins-1,4,5-P3.  相似文献   

11.
A cytosolic fraction derived from rat hepatocytes was used to investigate the regulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] kinase, the enzyme which converts Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The activity was doubled by raising the free Ca2+ concentration of the assay medium from 0.1 microM to 1.0 microM. A 5 min preincubation of the hepatocytes with 100 microM-dibutyryl cyclic AMP (db.cAMP) plus 100 nM-tetradecanoylphorbol acetate (TPA) resulted in a 40% increase in Ins(1,4,5)P3 kinase activity when subsequently assayed at 0.1 microM-Ca2+. This effect was smaller at [Ca2+] greater than 0.5 microM, and absent at 1.0 microM-Ca2+. Similar results were obtained after preincubation with 100 microM-db.cAMP plus 300 nM-vasopressin (20% increase at 0.1 microM-Ca2+; no effect at 1.0 microM-Ca2+). Preincubation with vasopressin, db.cAMP or TPA alone did not alter Ins(1,4,5)P3 kinase activity. It is proposed that these results, together with recent evidence implicating Ins(1,3,4,5)P4 in the control of Ca2+ influx, could be relevant to earlier findings that hepatic Ca2+ uptake is synergistically stimulated by cyclic AMP analogues and vasopressin.  相似文献   

12.
13.
We have synthesized two photolabile arylazido-analogues of Ins(1,4,5)P3 selectively substituted at the 1-phosphate group for determination of Ins(1,4,5)P3-binding proteins. These two photoaffinity derivatives, namely N-(4-azidobenzoyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AbaIP3) and N-(4-azidosalicyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AsaIP3), bind to high affinity Ins(1,4,5)P3-specific binding sites at a 9-fold lower affinity (Kd = 66 and 70 nM) than Ins(1,4,5)P3 (Kd = 7.15 nM) in a fraction from rat pancreatic acinar cells enriched in endoplasmic reticulum (ER). Other inositol phosphates tested showed comparable (DL-myo-inositol 1,4,5-trisphosphothioate, Kd = 81 nM) or much lower affinities for the binding sites [Ins(1,3,4,5)P4, Kd = 4 microM; Ins(1,4)P2, Kd = 80 microM]. Binding of AbaIP3 was also tested on a microsomal preparation of rat cerebellum [Kd = 300 nM as compared with Ins(1,4,5)P3, Kd = 45 nM]. Ca2+ release activity of the inositol derivatives was tested with AbaIP3. It induced a rapid and concentration-dependent Ca2+ release from the ER fraction [EC50 (dose producing half-maximal effect) = 3.1 microM] being only 10-fold less potent than Ins(1,4,5)P3 (EC50 = 0.3 microM). From the two radioactive labelled analogues ([3H]AbaIP3 and 125I-AsIP3) synthesized, the radioiodinated derivative was used for photoaffinity labelling. It specifically labelled three proteins with apparent molecular masses of 49, 37 and 31 kDa in the ER-enriched fraction. By subfractionation of this ER-enriched fraction on a Percoll gradient the 37 kDa Ins(1,4,5)P3 binding protein was obtained in a membrane fraction which showed the highest effect in Ins(1,4,5)P3-inducible Ca2+ release (fraction P1). The other two Ins(1,4,5)P3-binding proteins, of 49 and 31 kDa, were obtained in fraction P2, in which Ins(1,4,5)P3-induced Ca2+ release was half of that obtained in fraction P1. We conclude from these data that the 37 kDa and/or the 49 and 31 kDa proteins are involved in Ins(1,4,5)P3-induced Ca2+ release from the ER of rat pancreatic acinar cells.  相似文献   

14.
We have examined regulation by protein kinase C (Ca2+/phospholipid-dependent enzyme) of thrombin-induced inositol polyphosphate accumulation in human platelets. When platelets are exposed to thrombin for 10 s, the protein kinase C inhibitor staurosporine causes inositol phosphate elevations over control values of 2.7-fold (inositol 1,4,5-trisphosphate (Ins(1,4,5)P3], 1.9-fold (inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4], and 1.2-fold (inositol 1,3,4-trisphosphate). In the same period, phosphatidic acid and diacylglycerol are unaffected. The myosin light chain kinase inhibitor ML-7 has no effect on inositol phosphate accumulations. Staurosporine does not inhibit Ins(1,4,5)P3 3-kinase and 5-phosphomonoesterase activities in saponin-permeabilized platelets incubated with exogenous Ins(1,4,5)P3 unless the platelets have been exposed to thrombin and protein kinase C is consequently activated. The protein kinase C agonist beta-phorbol 12,13-dibutyrate increases the Vmax of the 3-kinase 1.8-fold, with little effect on Km. Our results provide strong evidence for a role for protein kinase C in regulating inositol phosphate levels in thrombin-activated platelets. We propose that endogenously activated protein kinase C removes Ins(1,4,5)P3 by stimulating both 5-phosphomonoesterase and Ins(1,4,5)P3 3-kinase. Initial activation of phospholipase C does not appear to be affected by such protein kinase C. Inhibition of protein kinase C by staurosporine decreases 5-phosphomonoesterase activity. The resulting elevated Ins(1,4,5)P3, as substrate for Ins(1,4,5)P3 3-kinase, promotes production of Ins(1,3,4,5)P4, which also may accumulate through decreased 5-phosphomonoesterase activity and elevated Ca2+ levels. These factors apparently counteract the inhibitory effect on 3-kinase, yielding a net increase in Ins(1,3,4,5)P4.  相似文献   

15.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

16.
Rat liver inositol 1,4,5-trisphosphate [Ins (1,4,5)P3] 3-kinase was purified in high yield by a three-step procedure reliant upon chromatography on heparin and calmodulin agarose. Purified enzyme was stable in the presence of the detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS) (0.1-0.5%) and the sulphydryl reducing reagent dithiothreitol (DTT). The purified enzyme was activated 2-3-fold by Ca2+ (1 microM) in the presence of calmodulin. Pyrophosphate and heparin were identified as inhibitors of the enzyme.  相似文献   

17.
The binding of [3H]Ins(1,4,5)P3 to bovine adrenocortical microsomes has been shown to be rapid, reversible and saturable. The microsomal preparation contained a single population of high affinity sites (KD = 6.82+/-2.3 nM, Bmax = 370+/-38 fmol/mg protein). The binding site was shown to exhibit positional specificity with respect to inositol trisphosphate binding, i.e. Ins(2,4,5)P3 was able to compete with [3H]Ins(1,4,5)P3 whereas Ins(1,3,4)P3 was not. Ins(1,3,4,5)P4 showed a similar affinity for the receptor as Ins(2,4,5)P3 whereas the other inositol phosphates tested, ATP, GTP and 2,3-DPG, were poor competitors. [3H]Ins(1,4,5)P3-binding was independent of free Ca2+ concentrations. The adrenocortical microsomal preparation has been incorporated into an assay which has been used to determine the basal and vasopressin-stimulated content of neutralised acid extracts of rat hepatocytes. Intracellular concentrations of Ins(1,4,5)P3 were calculated to be 0.22+/-0.15 microM basal and 2.53+/-1.8 microM at peak stimulation. This assay provides a simple, specific and quantitative method for the measurement of Ins(1,4,5)P3 concentrations in the picomolar range.  相似文献   

18.
We have studied the Ca(2+)-dependence and wortmannin-sensitivity of the initial inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) response induced by activation of either histamine or muscarinic receptors in smooth muscle from guinea pig urinary bladder. Activation of H(1) receptors with histamine (100 microM) produced a significant elevation in Ins(1,4,5)P(3) levels with only 5s stimulation and in the presence of external Ca(2+). However, this response was abolished fully by either the prolonged absence of external Ca(2+) or the depletion of internal Ca(2+) stores with thapsigargin (100nM) or ryanodine (10 microM). In contrast, the same conditions only slightly reduced the initial Ins(1,4,5)P(3) response induced by carbachol. The prolonged incubation of smooth muscle in 10 microM wortmannin to inhibit type III PI 4-kinase abolished both the early histamine-evoked Ins(1,4,5)P(3) and Ca(2+) responses. Conversely, wortmannin did not alter Ca(2+) release induced by carbachol, despite a partial reduction of its Ins(1,4,5)P(3) response. Collectively, these data indicate that the detectable histamine-induced increase in Ins(1,4,5)P(3) is more the consequence of Ca(2+) release from internal stores than a direct activation of phospholipase C by H(1) receptors. In addition, the effect of wortmannin implies the existence of a Ca(2+)-dependent amplification loop for the histamine-induced Ins(1,4,5)P(3) response in smooth muscle.  相似文献   

19.
We have examined hydrophobic properties of Tetrahymena CaM using the uncharged probe, n-phenyl-1-naphthylamine (NPN) fluorescence. The maximal fluorescence intensity of Tetrahymena calmodulin (CaM) is less than 1/12 of that of the bovine brain CaM. In the phosphodiesterase activation, the potency of Tetrahymena CaM, which was represented by reciprocals of the quantity of CaM required for half-maximal activation of enzyme was 22.7% respectively, of that of the bovine brain CaM. Here, Tetrahymena CaM had less hydrophobic groups exposed in the presence of Ca2+. Then Ca2+-CaM dependent enzymes require much amount of Tetrahymena CaM, comparing with the bovine brain CaM.  相似文献   

20.
Two soluble forms of inositol phosphate 5-phosphomonoesterase have been partially purified and characterized from rat brain and are referred to as type 1 and type 2 according to their order of elution from DEAE-Sepharose. Together, these enzymes represent 26 +/- 3% (mean +/- S.E., n = 4) of the total inositol 1,4,5-triphosphate (Ins(1,4,5)P3) phosphatase activity assayed in crude brain homogenate and are present in approximately equal total activities in a 100,000 x g supernatant, with the remainder being membrane-bound. Both soluble enzymes require Mg2+ for activity, are moderately inhibited by Ca2+ in the micromolar range, and can be inhibited by millimolar concentrations of a variety of phosphorylated compounds. The type 1 enzyme has been purified to a specific activity of 1.06 mumol/min/mg protein. It elutes as a 60-kDa protein on Sephacryl S-200. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the type 1 enzyme correlates with a pair of protein bands of 66 and 60 kDa. It has apparent Km values of 3 and 0.8 microM for Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), respectively, and hydrolyses Ins(1,4,5)P3 approximately 12 times faster than Ins(1,3,4,5)P4. The type 2 enzyme has been purified to a specific activity of 15.2 mumol/min/mg protein, elutes as a protein of 160 kDa on Sephacryl S-300, and migrates as a similarly sized subunit on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It has an apparent Km for Ins(1,4,5)P3 of 18 microM. Its apparent Km for Ins(1,3,4,5)P4, however, is greater than 150 microM, suggesting that this enzyme is primarily an Ins(1,4,5)P3 5-phosphomonoesterase. The relationship of these two enzymes to the inositol tris/tetrakisphosphate pathway is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号