首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the enzymes responsible for FcepsilonRI-dependent production of reactive oxygen species (ROS) and the influence of ROS on mast cell secretory responses. 5-Lipoxygenase (5-LO) was the primary enzyme involved in ROS production by human mast cells (huMC) and mouse bone marrow-derived mast cells (mBMMC) following FcepsilonRI aggregation because incubation with 5-LO inhibitors (AA861, nordihydroguaiaretic acid, zileuton) but not a flavoenzyme inhibitor (diphenyleneiodonium) completely abrogated Ag-induced dichlorodihydrofluorescein (DCF) fluorescence. Furthermore, 5-LO-deficient mBMMC had greatly reduced FcepsilonRI-dependent DCF fluorescence compared with wild type mBMMC or those lacking a functional NADPH oxidase (i.e., gp91(phox)- or p47(phox)-deficient cells). A minor role for cyclooxygenase (COX)-1 in FcepsilonRI-dependent ROS production was demonstrated by inhibition of Ag-mediated DCF fluorescence by a COX-1 inhibitor (FR122047) and reduced DCF fluorescence in COX-1-deficient mBMMC. Complete abrogation of FcepsilonRI-dependent ROS production in mast cells had no effect on degranulation or cytokine secretion. In response to the NADPH oxidase-stimulating agents including PMA, mBMMC and huMC produced negligible ROS. IgG-coated latex beads did stimulate ROS production in huMC, and in this experiment 5-LO and COX again appeared to be the enzymatic sources of ROS. In contrast, IgG-coated latex bead-induced ROS production in human polymorphonuclear leukocytes occurred by the NADPH oxidase pathway. Thus mBMMC and huMC generate ROS by 5-LO and COX-1 in response to FcepsilonRI aggregation; huMC generate ROS upon exposure to IgG-coated latex beads by 5-LO and COX; and ROS appear to have no significant role in FcepsilonRI-dependent degranulation and cytokine production.  相似文献   

2.
Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.  相似文献   

3.
Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200 μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100 μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100 μg/kg) over 3 days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.  相似文献   

4.
The kinase suppressor of ras 2 (KSR2) gene resides at human chromosome 12q24, a region linked to obesity and type 2 diabetes (T2D). While knocking out and phenotypically screening mouse orthologs of thousands of druggable human genes, we found KSR2 knockout (KSR2(-/-)) mice to be more obese and glucose intolerant than melanocortin 4 receptor(-/-) (MC4R(-/-)) mice. The obesity and T2D of KSR2(-/-) mice resulted from hyperphagia which was unresponsive to leptin and did not originate downstream of MC4R. The kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are each linked to food intake regulation, but only mTOR had increased activity in KSR2(-/-) mouse brain, and the ability of rapamycin to inhibit food intake in KSR2(-/-) mice further implicated mTOR in this process. The metabolic phenotype of KSR2 heterozygous (KSR2(+/minus;)) and KSR2(-/-) mice suggests that human KSR2 variants may contribute to a similar phenotype linked to human chromosome 12q24.  相似文献   

5.
1. The serotonin(1A) (5-HT(1A)) receptor is an important representative of G-protein coupled family of receptors. It is the most extensively studied among the serotonin receptors, and appears to be involved in various behavioral and cognitive functions. 2. We report here the pharmacological and functional characterization of the human serotonin(1A) receptor stably expressed in HN2 cell line, which is a hybrid cell line between hippocampal cells and mouse neuroblastoma. 3. Our results show that serotonin(1A) receptors in HN2-5-HT(1A)R cells display ligand-binding properties that closely mimic binding properties observed with native receptors. We further demonstrate that the differential discrimination of G-protein coupling by the specific agonist and antagonist, a hallmark of the native receptor, is maintained for the receptor in HN2-5-HT(1A)R cells. Importantly, the serotonin(1A) receptor in HN2-5-HT(1A)R cells shows efficient downstream signalling by reducing cellular cyclic AMP levels. 4. We conclude that serotonin(1A) receptors expressed in HN2-5-HT(1A)R cells represent a useful model system to study serotonin(1A) receptor biology, and is a potential system for solubilization and purification of the receptor in native-like membrane environment.  相似文献   

6.
Serotonin (5-HT) and 5-HT receptor agonists can modify the response of the mammalian suprachiasmatic nucleus (SCN) to light. It remains uncertain which 5-HT receptor subtypes mediate these effects. The effects of 5-HT receptor activation on optic nerve-mediated input to SCN neurons were examined using whole-cell patch-clamp recordings in horizontal slices of ventral hypothalamus from the male mouse. The hypothesis that 5-HT reduces the effect of retinohypothalamic tract (RHT) input to the SCN by acting at 5-HT1B receptors was tested first. As previously described in the hamster, a mixed 5-HT(1A/1B) receptor agonist, 1-[3-(trifluoromethyl)phenyl]-piperazine hydrochloride (TFMPP), reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked by selectively stimulating the optic nerve of wild-type mice. The agonist was negligibly effective in a 5-HT1B receptor knockout mouse, suggesting minimal contribution of 5-HT1A receptors to the TFMPP-induced reduction in the amplitude of the optic nerve-evoked EPSC. We next tested the hypothesis that 5-HT also reduces RHT input to the SCN via activation of 5-HT7 receptors. The mixed 5-HT(1A/7) receptor agonist, R(+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT), reduced the evoked EPSC amplitude in both wild-type and 5-HT1B receptor knockout mice. This effect of 8-OH-DPAT was minimally attenuated by the selective 5-HT1A receptor antagonist WAY 100635 but was reversibly and significantly reduced in the presence of ritanserin, a mixed 5-HT(2/7) receptor antagonist. Taken together with the authors' previous ultrastructural studies of 5-HT1B receptors in the mouse SCN, these results indicate that in the mouse, 5-HT reduces RHT input to the SCN by acting at 5-HT1B receptors located on RHT terminals. Moreover, activation of 5-HT7 receptors in the mouse SCN, but not 5-HT1A receptors, also results in a reduction in the amplitude of the optic nerve-evoked EPSC. The findings indicate that 5-HT may modulate RHT glutamatergic input to the SCN through 2 or more 5-HT receptors. The likely mechanism of altered RHT glutamatergic input to SCN neurons is an alteration of photic effects on the SCN circadian oscillator.  相似文献   

7.
Toivari M  Mäki T  Suutarla S  Eklund KK 《Life sciences》2000,67(23):2795-2806
Activated mast cells (MC) can produce a wide variety of potent inflammatory mediators. Excessive alcohol consumption is known to lead to immune deficiency and propensity for pneumonias in particular. As MCs are important in the first line of defence of mucosal membranes we have studied the effect of ethanol (EtOH) on several MC functions. EtOH attenuated dose dependently IgE-induced degranulation of mouse bone marrow derived mast cells (mBMMC) as reflected by the release of granule associated beta-hexosaminidase (beta-hex). A mean of 26 +/- 7% inhibition of beta-hex release was observed in the presence of 5/1000 (86 mM) EtOH and nearly complete inhibition in the presence of 20/1000 (344 mM) ethanol. The IgE-induced degranulation of mBMMC cultured with EtOH for seven days was inhibited to a similar degree as the degranulation of mBMMC exposed to EtOH for only one hour. Inclusion of 5/1000 (86 mM) ethanol in the medium reduced tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 production in human mast cell line (HMC-1) cells by 55 +/- 7% and 19 +/- 5%, respectively, and the presence of 20/1000 (344 mM) ethanol inhibited the expression 81 +/- 12% and 59 +/- 14% respectively. These results suggest that, in contrast to previous assumption, ethanol inhibits several critical MC functions at least in vitro. This inhibition of mediator, and cytokine release in particular, could contribute to the immune deficiency associated with chronic alcohol consumption.  相似文献   

8.
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R?/?mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic–pituitary–adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R?/? mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R?/? mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R?/? mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R?/? mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R?/? mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R?/? mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.  相似文献   

9.
In the dorsal raphe nucleus (DR), extracellular serotonin (5-HT) regulates serotonergic transmission through 5-HT1A autoreceptors. In this work we used in vivo microdialysis to examine the effects of stressful and pharmacological challenges on DR 5-HT efflux in 5-HT1A receptor knockout (5-HT1A-/-) mice and their wild-type counterparts (5-HT1A+/+). Baseline 5-HT concentrations did not differ between both lines of mice, which is consistent with a lack of tonic control of 5-HT1A autoreceptors on DR 5-HT release. (R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT, 0.5 mg/kg) reduced 5-HT levels to 30% of basal values in 5-HT1A+/+ mice, but not in 5-HT1A-/- mice. The selective 5-HT1B receptor agonist 1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrolo[3,2-b]pyridin-5-one dihydrochloride (CP 93129, 300 micro m) reduced dialysate 5-HT to the same extent (30-40% of baseline) in the two genotypes, which suggests a lack of compensatory changes in 5-HT1B receptors in the DR of such mutant mice. Both a saline injection and handling for 3 min increased DR dialysate 5-HT in mutants, but not in 5-HT1A+/+ mice. Fluoxetine (5 and 20 mg/kg) elevated 5-HT in a dose-dependent manner in both genotypes. However, this effect was markedly more pronounced in the 5-HT1A-/- mice. The increased responsiveness of the extracellular 5-HT in the DR of 5-HT1A receptor knockout mice reflects a lack of the autoinhibitory control exerted by 5-HT1A autoreceptors.  相似文献   

10.
The flavonoid, quercetin, is a low molecular weight substance found in apple, tomato and other fruit. Besides its antioxidative effect, quercetin, like other flavonoids, has a wide range of neuropharmacological actions including analgesia, and motility, sleep, anticonvulsant, sedative and anxiolytic effects. In the present study, we investigated its effect on mouse 5-hydroxytryptamine type 3 (5-HT3A) receptor channel activity, which is involved in pain transmission, analgesia, vomiting, and mood disorders. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured with the two-electrode voltage clamp technique. In oocytes injected with 5-HT3A receptor cRNA, quercetin inhibited the 5-HT-induced inward peak current (I(5-HT)) with an IC50 of 64.7 +/- 2.2 microM. Inhibition was competitive and voltage-independent. Point mutations of pre-transmembrane domain 1 (pre-TM1) such as R222T and R222A, but not R222D, R222E and R222K, abolished inhibition, indicating that quercetin interacts with the pre-TM1 of the 5-HT3A receptor.  相似文献   

11.
We hypothesized that anorexia induced by novelty stress caused by exposure to a novel environment may be due to activation of corticotropin-releasing factor (CRF) and subsequently mediated by decreasing peripheral ghrelin concentration via serotonin (5-HT) and melanocortin-4 receptors (MC4R). Each mouse was transferred from group-housed cages to individual cages to establish the novelty stress. We observed the effect of changes in feeding behavior in a novel environment using the method of transferring group-housed mice to individual cages. We investigated the effect of an intracerebroventricular injection of antagonists/agonists of CRF1/2 receptors (CRF1/2Rs), 5-HT(1B)/(2C) receptors (5-HT(1B)/(2C)R), and MC4R to clarify the role of each receptor on the decrease in food intake. Plasma ghrelin levels were also measured. The novelty stress caused a reduction in food intake that was abolished by administering a CRF1R antagonist. Three hours after the novelty stress, appetite reduction was associated with reduced levels of neuropeptide Y/agouti-related peptide mRNA, increased levels of proopiomelanocortin mRNA in the hypothalamus, and a decrease in plasma ghrelin level. Administering a CRF1R antagonist, a 5-HT(1B)/(2C)R antagonist, an MC4R antagonist, exogenous ghrelin, and an enhancer of ghrelin secretion, rikkunshito, resolved the reduction in food intake 3 h after the novelty stress by enhancing circulating ghrelin concentrations. We showed that anorexia during a novelty stress is a process in which CRF1R is activated at the early stage of appetite loss and is subsequently activated by a 5-HT(1B)/(2C)R and MC4R stimulus, leading to decreased peripheral ghrelin concentrations.  相似文献   

12.
The distribution and function of the 5-hydroxytryptamine (5-HT(2A)) receptor were investigated in the intestines of wild-type (5-HT(2A) +/+) and knockout (5-HT(2A) -/-) mice. In 5-HT(2A) +/+ mice, rats, and guinea pigs, 5-HT(2A) receptor immunoreactivity was found on circular and longitudinal smooth muscle cells, neurons, enterocytes, and Paneth cells. Muscular 5-HT(2A) receptors were concentrated in caveolae; neuronal 5-HT(2A) receptors were found intracellularly and on the plasma membranes of nerve cell bodies and axons. Neuronal 5-HT(2A) immunoreactivity was detected as early as E14 in ganglia, intravillus nerves, and the deep muscle plexus. The 5-HT(2A) -/- colon did not express 5-HT(2A) receptors and did not contract in response to exogenous 5-HT. 5-HT(2A) -/- enterocytes were smaller, Paneth cells fewer, and muscle layers thinner (and showed degeneration) compared with those of 5-HT(2A) +/+ littermates. The 5-HT(2A) receptor may thus be required for the maintenance and/or development of enteric neuroeffectors and other enteric functions, although gastrointestinal and colonic transit times in 5-HT(2A) -/- and +/+ mice did not differ significantly.  相似文献   

13.
Because cannabinoid and serotonin (5-HT) systems have been proposed to play an important role in drug craving, we investigated whether cannabinoid 1 (CB1) and 5-HT(1A) receptor ligands could affect voluntary alcohol intake in two mouse strains, C57BL/6 J and DBA/2 J, with marked differences in native alcohol preference. When offered progressively (3-10% ethanol) in drinking water, in a free-choice procedure, alcohol intake was markedly lower (approximately 70%) in DBA/2 J than in C57BL/6 J mice. In DBA/2 J mice, chronic treatment with the cannabinoid receptor agonist WIN 55,212-2 increased alcohol intake. WIN 55,212-2 effect was prevented by concomitant, chronic CB1 receptor blockade by rimonabant or chronic 5-HT(1A) receptor stimulation by 8-hydroxy-2-(di-n-propylamino)-tetralin, which, on their own, did not affect alcohol intake. In C57BL/6 J mice, chronic treatment with WIN 55,212-2 had no effect but chronic CB1 receptor blockade or chronic 5-HT(1A) receptor stimulation significantly decreased alcohol intake. Parallel autoradiographic investigations showed that chronic treatment with WIN 55,212-2 significantly decreased 5-HT(1A)-mediated [35S]guanosine triphosphate-gamma-S binding in the hippocampus of both mouse strains. Conversely, chronic rimonabant increased this binding in C57BL/6 J mice. These results show that cannabinoid neurotransmission can exert a permissive control on alcohol intake, possibly through CB1-5-HT(1A) interactions. However, the differences between C57BL/6 J and DBA/2 J mice indicate that such modulations of alcohol intake are under genetic control.  相似文献   

14.
15.
Accumulating evidence has indicated that vertebrate oocytes are arrested at late prophase (G2 arrest) by a G protein coupled receptor (GpCR) that activates adenylyl cyclases. However, the identity of this GpCR or its regulation in G2 oocytes is unknown. We demonstrated that ritanserin (RIT), a potent antagonist of serotonin receptors 5-HT2R and 5-HT7R, released G2 arrest in denuded frog oocytes, as well as in follicle-enclosed mouse oocytes. In contrast to RIT, several other serotonin receptor antagonists (mesulergine, methiothepine, and risperidone) had no effect on oocyte maturation. The unique ability of RIT, among serotonergic antagonists, to induce GVBD did not match the antagonist profile of any known serotonin receptors including Xenopus 5-HT7R, the only known G(s)-coupled serotonin receptor cloned so far in this species. Unexpectedly, injection of x5-HT7R mRNA in frog oocytes resulted in hormone-independent frog oocyte maturation. The addition of exogenous serotonin abolished x5-HT7R-induced oocyte maturation. Furthermore, the combination of x5-HT7R and exogenous serotonin potently inhibited progesterone-induced oocyte maturation. These results provide the first evidence that a G-protein coupled receptor related to 5-HT7R may play a pivotal role in maintaining G2 arrest in vertebrate oocytes.  相似文献   

16.
The optically pure enantiomers of the potential atypical antipsychotic agents 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 5) and 5-methoxy-2-{N-[2-(2,6-dimethoxy)benzamidoethyl]-N-n-propylamino}t etralin [5-OMe-(2,6-di-OMe)-BPAT, 6] were synthesized and evaluated for their in vitro binding affinities at alpha1-, alpha2-, and beta-adrenergic, muscarinic, dopamine D1, D2A, and D3, and serotonin 5-HT1A and 5-HT2 receptors. In addition, their intrinsic efficacies at serotonin 5-HT1A receptors were established in vitro. (S)- and (R)-5 had high affinities for dopamine D2A, D3, and serotonin 5-HT1A receptors, moderate affinities for alpha1-adrenergic and serotonin 5-HT2 receptors, and no affinity (Ki > 1000 nM) for the other receptor subtypes. (S)- and (R)-6 had lower affinities for the dopamine D2A and the serotonin 5-HT1A receptor, compared to (S)- and (R)-5, and hence showed some selectivity for the dopamine D3 receptor. The interactions with the receptors were stereospecific, since the serotonin 5-HT1A receptor preferred the (S)-enantiomers, while the dopamine D2A and D3 receptors preferred the (R)-enantiomers of 5 and 6. The intrinsic efficacies at the serotonin 5-HT1A receptor were established by measuring their ability to inhibit VIP-induced cAMP production in GH4ZD10 cells expressing serotonin 5-HT1A receptors. Both enantiomers of 5 behaved as full serotonin 5-HT1A receptor agonists in this assay, while both enantiomers of 6 behaved as weak partial agonists. The potential antipsychotic properties of (S)- and (R)-5 were evaluated by establishing their ability to inhibit d-amphetamine-induced locomotor activity in rats, while their propensity to induce extrapyramidal side-effects (EPS) in man was evaluated by determining their ability to induce catalepsy in rats. Whereas (R)-5 was capable of blocking d-amphetamine-induced locomotor activity, indicative of dopamine D2 receptor antagonism, (S)-5 even enhanced the effect of d-amphetamine, suggesting that this compound has dopamine D2 receptor-stimulating properties. Since both enantiomers also were devoid of cataleptogenic activity, they are interesting candidates for further exploring the dopamine D2/serotonin 5-HT1A hypothesis of atypical antipsychotic drug action.  相似文献   

17.
Heterologous expression of the rat 5-HT1A receptor in stably transfected GH4C1 rat pituitary cells (clone GH4ZD10) and mouse Ltk- fibroblast cells (clone LZD-7) (Albert, P.R., Zhou, Q.-Y., VanTol, H.H.M., Bunzow, J.R., and Civelli, O. (1990) J. Biol. Chem. 265, 5825-5832) was used to characterize the cellular specificity of signal transduction by the 5-HT1A receptor. We demonstrate that the 5-HT1A receptor, acting via pertussis toxin-sensitive G proteins, can change its inhibitory signaling phenotype and become a stimulatory receptor, depending on the cell type, differentiation state, or intracellular milieu of the cell in which it is expressed. When expressed in pituitary GH4ZD10 cells, activation of 5-HT1A receptors decreased both basal and vasoactive intestinal peptide-enhanced cAMP accumulation and blocked (+/-)-Bay K8644-induced influx of calcium, inhibitory responses which are typical of neurons which endogenously express this receptor. Similarly, 5-hydroxytryptamine (5-HT) also inhibited adenylyl cyclase in fibroblast LZD-7 cells, reducing the forskolin-induced enhancement of cAMP levels by 50%, but did not alter basal cAMP levels. In contrast to GH4ZD10 cells, where 5-HT had no effect on basal or thyrotropin-releasing hormone-induced phosphatidylinositol turnover, 5-HT enhanced the accumulation of inositol phosphates and induced a biphasic increase in [Ca2+]i in LZD-7 cells. These dominant stimulatory actions of 5-HT, as well as the inhibitory effects, were absent in untransfected cells and displayed the potency and pharmacological specificity of the 5-HT1A receptor, indicating that the 5-HT1A subtype coupled to both inhibitory and stimulatory pathways in the fibroblast cell. The actions of 5-HT in GH and L cells were blocked by 24-h pretreatment with pertussis toxin, suggesting that inhibitory G proteins (Gi/G(o)) mediate both inhibitory and stimulatory signal transduction of the 5-HT1A receptor. However, the 5-HT-induced stimulatory pathway in fibroblasts was blocked selectively by acute (2-min) pretreatment with TPA, an activator of protein kinase C. This action of protein kinase C was potentiated by activation of protein kinase A, indicating that the expression of the stimulatory pathway of the 5-HT1A receptor in LZD-7 cells is modulated by second messengers.  相似文献   

18.
19.
Heterozygous brain-derived neurotrophic factor (BDNF) (+/-) mice display abnormalities in central serotonergic neurotransmission, develop decrements in serotonergic innervation of the forebrain, and exhibit enhanced intermale aggressiveness. As disturbances of serotonin neurotransmission are implicated in alcohol abuse and aggression, we have examined in BDNF (+/-) mice alcohol drinking behavior, as well as central 5-hydroxytryptamine (5-HT)1A receptor function at the level of 5-HT1A receptor-G protein interaction. BDNF (+/-) mice displayed increased ethanol intake in a two-bottle choice procedure. There was no difference in the preference ratio for non-alcoholic tastants (i.e. quinine or saccharin) between genotypes. In the brains of alcohol-naive mice, we measured [35S]GTP gamma S binding stimulated by the 5-HT1A receptor agonist (+/-)-8-hydroxy-2-dipropyl-aminotetralin hydrobromide (8-OH-DPAT; 1 microM). In BDNF (+/-) versus wild-type (WT) mice, 5-HT1A receptor-stimulated [35S]GTP gamma S binding was significantly attenuated in the median raphe nucleus. There was a decrease in (+/-)8-OH-DPAT-stimulated [35S]GTP gamma S binding in the dorsal raphe, which did not reach statistical significance. In the hippocampus, 5-HT1A receptor-stimulated [35S]GTP gamma S binding was significantly attenuated in BDNF (+/-) mice. 5-HT1A receptor-stimulated [35S]GTP gamma S binding was attenuated in the anterior cingulate cortex and lateral septum, although these reductions did not reach statistical significance. 5-HT1A receptor number was not different between genotypes in any area of brain examined, suggesting that 5-HT1A receptor function, specifically the capacity of the 5-HT1A receptor to activate G proteins, is attenuated in BDNF (+/-) mice.  相似文献   

20.
The effect of mutations (V344E and T343A/V344E) in the third intracellular loop of the serotonin 5-HT(1A) receptor expressed transiently in human embryonic kidney 293 cells have been examined in terms of receptor/G protein interaction and signaling. Serotonin, (R)-8-hydroxy-2-dipropylaminotetralin [(R)-8-OH-DPAT], and buspirone inhibited cyclic AMP production in cells expressing native and mutant 5-HT(1A) receptors. Serotonin, however, produced inverse bell-shaped cyclic AMP concentration-response curves at native and mutant 5-HT(1A) receptors, indicating coupling not only to G(i)/G(o), but also to G(s). (R)-8-OH-DPAT, however, induced stimulation of cyclic AMP production only after inactivation of G(i)/G(o) proteins by pertussis toxin and only at the mutant receptors. The partial agonist buspirone was unable to induce coupling to G(s) at any of the receptors, even after pertussis toxin treatment. The basal activities of native and mutant 5-HT(1A) receptors in suppressing cyclic AMP levels were not found to be significantly different. The receptor binding characteristics of the native and mutant receptors were investigated using the novel 5-HT(1A) receptor antagonist [(3)H]NAD-299. For other receptors, analogous mutations have produced constitutive activation. This does not occur for the 5-HT(1A) receptor, and for this receptor the mutations seem to alter receptor/G protein coupling, allowing ligand-dependent coupling of receptor to G(s) in addition to G(i)/G(o) proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号