首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Factor-Xa assembly into the prothrombinase complex decreases its availability for inhibition by antithrombin + unfractionated heparin (AT + UFH). We have developed a novel covalent antithrombin-heparin complex (ATH), with enhanced anticoagulant actions compared with AT + UFH. The present study was performed to extend understanding of the anticoagulant mechanisms of ATH by determining its inhibition of Xa within the critical prothrombinase. Discontinuous inhibition assays were performed to determine final k(2) values for inhibition of Xa. Fluorescent microscopy was conducted to evaluate inhibitor-prothrombinase interactions. The k(2) for inhibition of prothrombinase versus free Xa by AT + UFH was lower, whereas for ATH were much higher. Relative to intact prothrombinase, rates for Xa inhibition by AT + UFH in complexes devoid of prothrombin/vesicles/factor-Va were higher. For ATH, exclusion of prothrombin decreased k(2), removal of vesicles increased k(2) and exclusion of factor-Va gave no effect. While UFH may displace Xa from prothrombinase, Xa is detained within prothrombinase during ATH reactions. We confirm prothrombinase hinders inhibitory action of AT + UFH, whereas ATH is less affected with prothrombin being a key component in the complex responsible for the opposing effects. Overall, the results suggest that covalent linkage between AT-heparin assists access and neutralization of complexed Xa, with concomitant inhibition of prothrombinase function compared with conventional non-conjugated heparin.  相似文献   

2.
Antithrombin (AT) circulates in two isoforms, alpha- (90-95%) and beta-AT (5-10%). AT inhibits clotting factors such as thrombin and factor Xa, a reaction catalyzed by heparin. Heparin has been used in many clinical situations but suffers from limitations such as a short intravenous half-life, bleeding risk, and the inability to inhibit thrombin bound to fibrin clots. In order to overcome some of heparin's limitations, we prepared a covalent AT-heparin complex (ATH) that has increased intravenous half-life, reduced bleeding risk, and can directly inhibit clot-bound thrombin. However, structural analysis is required to further develop this promising antithrombotic agent. It was found that the proportion of isoforms in ATH (55% alpha-AT, and 45% beta-AT) was significantly different than that in the commercial AT starting material (80% alpha-AT and 20% beta-AT). Further analysis of the rate of heparin-catalyzed inhibition of thrombin by AT isoforms prepared from ATH revealed that the beta-variant reacted approximately 2-fold faster.  相似文献   

3.
Covalent antithrombin-heparin (ATH) complexes, formed spontaneously between antithrombin (AT) and unfractionated standard heparin (H), have a potent ability to catalyze the inhibition of factor Xa (or thrombin) by added AT. Although approximately 30% of ATH molecules contain two AT-binding sites on their heparin chains, the secondary site does not solely account for the increased activity of ATH. We studied the possibility that all pentasaccharide AT-binding sequences in ATH may catalyze factor Xa inhibition. Chromatography of ATH on Sepharose-AT resulted in >80% binding of the load. Similar chromatographies of non-covalent AT + H mixtures lead to a lack of binding for AT and fractionation of H into unbound (separate from AT) or bound material. Gradient elution of ATH from Sepharose-AT gave 2 peaks, a peak containing higher affinity material that had greater anti-factor Xa catalytic activity (708 units/mg heparin) compared with the peak containing lower affinity material (112 units/mg). Sepharose-AT chromatography of the ATH component with short heparin chains (相似文献   

4.
The activation of Factor XII occurs via fragmentation of this zymogen into a diverse spectrum of enzymatically potent molecular species. To study the interaction of antithrombin-heparin cofactor and heparin with activated Factor XII, we have employed two forms of this enzyme with widely differing physical characteristics and biologic potencies. Antithrombin-heparin cofactor was found to be a progressive, time-dependent inhibitor of both forms. The addition of heparin dramatically accelerated the rates of these interactions. Furthermore, sodium dodecyl sulfate gel electrophoresis of reduced proteins has indicated that antithrombin-heparin cofactor functions by forming an undissociable complex with either species of the enzyme. This complex represents a 1:1 stoichiometric combination of activated Factor XII and inhibitor. In the presence of heparin, both species undergo virtually instantaneous complex formation with antithrombin-heparin cofactor without exhibiting alterations in dissociability or stoichiometry.  相似文献   

5.
Thrombin exosite 1 binds the predominant gamma(A)/gamma(A)-fibrin form with low affinity. A subpopulation of fibrin molecules, gamma(A)/gamma'-fibrin, has an extended COOH terminus gamma'-chain that binds exosite 2 of thrombin. Bivalent binding to gamma(A)/gamma'-fibrin increases the affinity of thrombin 10-fold, as determined by surface plasmon resonance. Because of its higher affinity, thrombin dissociates 7-fold more slowly from gamma(A)/gamma'-fibrin clots than from gamma(A)/gamma(A)-fibrin clots. After 24 h of washing, however, both gamma(A)/gamma'- and gamma(A)/gamma(A)-fibrin clots generate fibrinopeptide A when incubated with fibrinogen, indicating the retention of active thrombin. Previous studies demonstrated that heparin heightens the affinity of thrombin for fibrin by simultaneously binding to fibrin and exosite 2 on thrombin to generate a ternary heparin-thrombin-fibrin complex that protects thrombin from inhibition by antithrombin and heparin cofactor II. In contrast, dermatan sulfate does not promote ternary complex formation because it does not bind to fibrin. Heparin-catalyzed rates of thrombin inhibition by antithrombin were 5-fold slower in gamma(A)/gamma'-fibrin clots than they were in gamma(A)/gamma(A)-fibrin clots. This difference reflects bivalent binding of thrombin to gamma(A)/gamma'-fibrin because (a) it is abolished by addition of a gamma'-chain-directed antibody that blocks exosite 2-mediated binding of thrombin to the gamma'-chain and (b) the dermatan sulfate-catalyzed rate of thrombin inhibition by heparin cofactor II also is lower with gamma(A)/gamma'-fibrin than with gamma(A)/gamma(A)-fibrin clots. Thus, bivalent binding of thrombin to gamma(A)/gamma'-fibrin protects thrombin from inhibition, raising the possibility that gamma(A)/gamma'-fibrin serves as a reservoir of active thrombin that renders thrombi thrombogenic.  相似文献   

6.
Acidic and non-acidic forms of rabbit thrombomodulin were studied with regard to their effects on the inhibition of thrombin by antithrombin in the presence of exogenous heparin. The non acidic form was obtained by proteolytic cleavage of a polyanionic component (presumably a sulfated polysaccharide) from the parent acidic form of thrombomodulin, and purified by ion-exchange chromatography. It was previously found that the acidic form of thrombomodulin increases the rate of thrombin inactivation by antithrombin. The present study showed that thrombin bound to acidic thrombomodulin was inactivated at a lower rate by antithrombin in the presence of exogenous heparin than was free thrombin or thrombin bound to the non-acidic form of thrombomodulin. The data suggest that the acidic component of thrombomodulin is primarily responsible for the retardation of thrombin-antithrombin complex formation in the presence of exogenous heparin. It is proposed that the polyanionic component of thrombomodulin blocks a site on thrombin required for heparin binding, thus rendering the antithrombin-heparin complex ineffective.  相似文献   

7.
Inhibition of thrombin by synthetic hirudin peptides   总被引:1,自引:0,他引:1  
To investigate the role of different regions of hirudin in the interaction with the proteinase thrombin, segments of hirudin containing 15-51 residues were synthesized. The C-terminal segment 40-65 inhibited the fibrinogen clotting activity of thrombin but not amidolysis of tosyl-Gly-Pro-Arg-p-nitroanilide. Central peptide 15–42 was insoluble at pH 7, but peptide 15-65 inhibited fibrinogen clotting and amidolysis to an equal extent. The N-terminal loop peptide 1-15 had no inhibitory activity and did not affect the potency of peptide 15-65. These data suggest that the central region inhibits catalysis.  相似文献   

8.
Inhibition of fibrinolytic enzymes by thrombin inhibitors   总被引:1,自引:0,他引:1  
N Gilboa  G B Villannueva  J W Fenton 《Enzyme》1988,40(2-3):144-148
Thrombin inhibitors have recently advanced to the stage of preclinical testing as anticoagulants. However, little is known about the effects of these inhibitors on the enzymes of the fibrinolytic system. In the present study we evaluated the effect of two protein and two synthetic inhibitors of thrombin on tissue plasminogen activator (tPA), urokinase, and plasmin. We found that hirudin inhibited the amidolytic activity of plasmin but had no effect on tPA or urokinase. Antithrombin III inhibited plasmin and urokinase but had no effect on tPA. D-Phe-Pro-Arg-CH2Cl inhibited plasmin and tPA but had no effect on urokinase. Thromstop inhibited all three fibrinolytic enzymes: plasmin, urokinase, and tPA. Thus each thrombin inhibitor tested had different inhibitory effects on the fibrinolytic enzymes. These effects should be carefully considered when thrombin inhibitors are used as antithrombotic drugs.  相似文献   

9.
Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during the inhibitory process. Protection from inhibition by antithrombin and heparin cofactor II requires ligation of both exosites 1 and 2 because minimal protection is seen when exosite 1 variants (gamma-thrombin and thrombin Quick 1) or an exosite 2 variant (Arg93 --> Ala, Arg97 --> Ala, and Arg101 --> Ala thrombin) is substituted for thrombin. Likewise, the rate of thrombin inhibition by the heparin-independent inhibitor, alpha1-antitrypsin Met358 --> Arg, is decreased less than 2-fold in the presence of soluble fibrin and heparin. In contrast, thrombin is protected from inhibition by a covalent antithrombin-heparin complex, suggesting that access of heparin to exosite 2 of thrombin is hampered when ternary complex formation occurs. These results reveal the importance of exosites 1 and 2 of thrombin in assembly of the ternary complex and the subsequent protection of thrombin from inhibition by heparin-catalyzed inhibitors.  相似文献   

10.
11.
The three-dimensional structure of a thrombin inhibitor-trypsin complex has been determined by an X-ray analysis at 2.5 A resolution. The result has given experimental support to the mechanisms previously proposed by the authors for the selective inhibition of trypsin, thrombin, factor Xa, and plasmin by inhibitors with an arginine or lysine backbone. The differences in the amino acid sequences at the positions corresponding to Ilc63, Leu99, and Ser190 of trypsin give each enzyme different binding affinities toward inhibitors and result in the selective inhibition. Furthermore, the X-ray analysis has revealed a novel type of interaction between the inhibitor and trypsin. The hydrogen bonds between the inhibitor main chain and trypsin Gly216 play an essential role in the complex formation.  相似文献   

12.
13.
Behavior of the covalent [32P]- and [14C]AMP-RNA ligase complex under various conditions has been studied. The covalent structure is shown to be readily cleaved by acid and hydroxylamine and relatively stable to alkali and snake venom phosphodiesterase. Products of degradation of the AMP-RNA ligase and AMP-DNA ligase complexes were compared. The data obtained support the earlier assumption of a phosphoamide bond in the AMP-RNA ligase compound.  相似文献   

14.
15.
Inhibition of the enzymatic activity of thrombin by concanavalin A   总被引:1,自引:0,他引:1  
Concanavalin A, a carbohydrate lectin derived from the jack bean, prolongs the thrombin clotting time of human plasma or purified fibrinogen. Prolongation is due to delay in peptide release from fibrinogen. The rate of fibrin monomer polymerization is not affected. Hydrolysis of protamine sulfate by thrombin is inhibited by concanavalin A. All inhibitory effects are prevented by α-methyl-D-mannoside. Concanavalin A does not delay clotting of fibrinogen by reptilase (releases fibrinopeptide A only) or by Ancistrodon contortrix contortrix (releases fibrinopeptide B initially followed by a small amount of A). It is concluded that concanavalin A binds to a carbohydrate on the thrombin molecule thus inhibiting its enzymatic activity.  相似文献   

16.
Eight different sulfated polysaccharides were isolated from Chlorophyta. All exhibited thrombin inhibition through a heparin cofactor II (HCII)-dependent pathway, and their effects on the inhibition of thrombin were more potent than those of heparin or dermatan sulfate. In particular, remarkably potent thrombin inhibition was found for the sulfated polysaccharides isolated from the Codiales. In the presence of these sulfated polysaccharides, both the recombinant HCII (rHCII) variants Lys(173)-->Leu and Arg(189)-->His, which are defective in interactions with heparin and dermatan sulfate, respectively, inhibited thrombin in a manner similar to native rHCII. This result indicates that the binding site of HCII for each of these eight sulfated polysaccharides is different from the heparin- or dermatan sulfate-binding site. All the sulfated polysaccharides but RS-2 significantly stimulated the inhibition of thrombin by an N-terminal deletion mutant of HCII (rHCII-Delta74). Furthermore, hirudin(54-65) decreased only 2-5-fold the rate of thrombin inhibition by HCII stimulated by the sulfated polysaccharides, while HD22, a single-stranded DNA aptamer that binds exosite II of thrombin, produced an approximately 10-fold reduction in this rate. These results suggest that, unlike heparin and dermatan sulfate, the sulfated polysaccharides isolated from Chlorophyta activate HCII primarily by an allosteric mechanism different from displacement and template mechanisms.  相似文献   

17.
The effects of 1,2-cyclohexanedione and phenylglyoxal on staphylococcal alpha-toxin were studied. Modification of one arginine residue in alpha-toxin was sufficient to render the toxin nonhemolytic with no conformational change. Modified alpha-toxin did not protect cells from hemolysis by native alpha-toxin. An arginine residue is therefore at or near the binding site of alpha-toxin. Trypsin digestion of modified alpha-toxin generated a 20 kDa fragment which was isolated using a boric acid gel column. Upon regeneration, this 20 kDa fragment was not recognized by a population of antibodies which prevented alpha-toxin binding. The fragment was recognized by antibodies directed against post-binding events. However, the antibinding antibodies recognized the intact modified toxin. This leads us to conclude that antibinding determinants are not found directly in the binding site or are conformationally masked.  相似文献   

18.
Succinate-cytochrome c reductase (SCR) from mouse liver was inhibited strongly and reversibly by an iron (II) macrocyclic complex 3. The inhibition was observed for the enzyme toward the reduction of both 2,6-dichlorophenol indophenol (DCIP) and cytochrome c (cyt c). The inhibition was a mixed type and noncompetitive with respect to the reduction of DCIP and cyt c, respectively. Values of the inhibition constant ranged from 6.6 to 8.3 microM. The IC50 for the complex 3 was found to be 16.6 +/- 0.8 and 12.1 +/- 0.5 microM for the enzyme toward DCIP and cyt c, respectively. The reduced form of complex 3 also exhibited enzyme inhibition but to a less extent. Complex 3, at a lower level, equal to 25% of its LD50 showed about 50% inhibition of the enzyme through in vivo dose-dependent effect. These findings suggested that the structure of the equatorial benzoquinoid macrocyclic ligand of the Fe(II) complex is involved in the enzyme inhibition.  相似文献   

19.
Although fibrin-bound thrombin is resistant to inactivation by heparin.antithrombin and heparin.heparin cofactor II complexes, indirect studies in plasma systems suggest that the dermatan sulfate.heparin cofactor II complex can inhibit fibrin-bound thrombin. Herein we demonstrate that fibrin monomer produces a 240-fold decrease in the heparin-catalyzed rate of thrombin inhibition by heparin cofactor II but reduces the dermatan sulfate-catalyzed rate only 3-fold. The protection of fibrin-bound thrombin from inhibition by heparin.heparin cofactor II reflects heparin-mediated bridging of thrombin to fibrin that results in the formation of a ternary heparin.thrombin.fibrin complex. This complex, formed as a result of three binary interactions (thrombin.fibrin, thrombin.heparin, and heparin.fibrin), limits accessibility of heparin-catalyzed inhibitors to thrombin and induces conformational changes at the active site of the enzyme. In contrast, dermatan sulfate binds to thrombin but does not bind to fibrin. Although a ternary dermatan sulfate. thrombin.fibrin complex forms, without dermatan sulfate-mediated bridging of thrombin to fibrin, only two binary interactions exist (thrombin.fibrin and thrombin. dermatan sulfate). Consequently, thrombin remains susceptible to inactivation by heparin cofactor II. This study explains why fibrin-bound thrombin is susceptible to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin.  相似文献   

20.
The glyoxalase pathway is responsible for conversion of cytotoxic methylglyoxal (MG) to d-lactate. MG toxicity arises from its ability to form advanced glycation end products (AGEs) on proteins, lipids and DNA. Studies have shown that inhibitors of glyoxalase I (GLO1), the first enzyme of this pathway, have chemotherapeutic effects both in vitro and in vivo, presumably by increasing intracellular MG concentrations leading to apoptosis and cell death. Here, we present the first molecular inhibitor, 4-bromoacetoxy-1-(S-glutathionyl)-acetoxy butane (4BAB), able to covalently bind to the free sulfhydryl group of Cys60 in the hydrophobic binding pocket adjacent to the enzyme active site and partially inactivate the enzyme. Our data suggests that partial inactivation of homodimeric GLO1 is due to the modification at only one of the enzymatic active sites. Although this molecule may have limited use pharmacologically, it may serve as an important template for the development of new GLO1 inhibitors that may combine this strategy with ones already reported for high affinity GLO1 inhibitors, potentially improving potency and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号