首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Membrane crystals of the mitochondrial outer membrane channel VDAC (porin) fromNeurospora crassa were incubated with a 20-amino-acid synthetic peptide corresponding to the N-terminal targeting region of subunit IV of cytochrome oxidase. The peptide caused disordering and contraction of the crystal lattice of the membrane arrays. Also, new stain-excluding features were observed on the peptide-treated arrays which most likely correspond to sites at which the peptide accumulates. The stain exclusion zones associated with binding of the targeting peptide (and with binding of apocytochromec in an earlier study) have been localized on a two-dimensional density map of frozen-hydrated, crystalline VDAC previously obtained by cryo-electron microscopy. The results indicate that both the peptide and cytochromec bind to protein arms which extend laterally between the channel lumens. The finding that imported polypeptides bind to a specific region of the VDAC protein implicates this channel in the process by which precursor proteins are recognized at and translocated across the mitochondrial outer membrane.  相似文献   

2.
Summary A voltage-dependent cationic channel of large conductance is observed in phospholipid bilayers formed at the tip of microelectrodes from proteoliposomes derived from mitochondrial membranes. This channel was blocked by a 13-residue peptide with the sequence of the amino terminal extremity of the nuclear-coded subunit IV of cytochromec oxidase. The blockade was reversible, voltage- and dose-dependent. The peptide did not affect the activity of aTorpedo chloride channel observed under the same conditions. From experiments with phospholipid monolayers, it is unlikely that the peptide inserts into bilayers under the experimental conditions used. The blockade was observed from both sides of the membrane, being characterized by more frequent transitions to the lower conductance states, and a maximum effect was observed around 0 mV. Channels, the gating mechanism of which had been eliminated by exposure to trypsin, were also blocked by the peptide. For trypsinized channels, the duration of the closure decreased and the blockade saturated at potentials below –30 mV. These observations are consistent with a translocation of the peptide through the channel. Dynorphin B, which has the same length and charge as the peptide, had some blocking activity. Introduction of negative charges in the peptide by succinylation suppressed the activity.  相似文献   

3.
Aqueous channels are at the core of the translocase of the outer membrane (TOM) and the translocase of the inner membrane for the transport of preproteins (TIM23), the translocases mediating the transport of proteins across the outer and inner mitochondrial membranes. Yet, the existence of a channel associated to the translocase of the inner membrane for the insertion of multitopic protein (TIM22) complex has been arguable, as its function relates to the insertion of multispanning proteins into the inner membrane. For the first time, we report conditions for detecting a channel activity associated to the TIM22 translocase in organelle, i.e. intact mitoplasts. An internal signal peptide in the intermembrane space of mitochondria is a requisite to inducing this channel, which is otherwise silent. The channel showed slightly cationic and high conductance activity of 1000 pS with a predominant half-open substate. Despite their different composition, the channels of the three mitochondrial translocases were thus remarkably similar, in agreement with their common task as pores transiently trapping proteins en route to their final destination. The opening of the TIM22 channel was a step-up process depending on the signal peptide concentration. Interestingly, low membrane potentials kept the channel fully open, providing a threshold level of the peptide is present. Our results portray TIM22 as a dynamic channel solely active in the presence of its cargo proteins. In its fully open conformation, favored by the combined action of internal signal peptide and low membrane potential, the channel could embrace the in-transit protein. As insertion progressed and initial interaction with the signal peptide faded, the channel would close, sustaining its role as a shunt that places trapped proteins into the membrane.  相似文献   

4.
In addition to the voltage-dependent anion channel (VDAC), mitochondrial outer membranes contain a cationic channel of large conductance, which is blocked by a mitochondrial addressing peptide (peptide-sensitive channel, PSC). Bovine adrenal cortex mitochondria were solubilized in 1.5% octyl -glucoside, and membrane vesicles were reconstituted by slow dilution with a low ionic strength buffer. The reconstituted vesicles contained a functional channel possessing the electrical characteristics of the cationic channel, including its sensitivity to the mitochondrial addressing peptide. Important features of the described protocol are the nature of the detergent, its concentration, and the addition of glycerol during the whole procedure. No solubilization could be observed in the presence of cholate.  相似文献   

5.
F Fèvre  J P Henry    M Thieffry 《Biophysical journal》1994,66(6):1887-1894
We have previously shown that a 13-residue basic peptide, derived from the presequence of a mitochondrial precursor, blocked the cationic channel of the outer mitochondrial membrane. The properties of the blockade suggested that the peptide could go through the pore in the presence of a sufficient driving force. In an attempt to evaluate more precisely the relevance of such an interpretation, we have examined the effect on the same channel of basic peptides from 16 to 34 residues, most of which are parts of or derive from mitochondrial presequences. Two peptides were found to induce a reversible voltage-dependent blockade, the properties of which were the same as those of the blockade induced by the 13-residue peptide. The others had a similar effect, but triggered in addition a modification of the voltage gating that persisted after washing the peptide out. The modification was in turn abolished by trypsin added to the side of the channel previously exposed to the peptide. The protease acted on the bound peptide and not on the channel itself. The irreversible modification of the voltage gating, the mechanism of which remains obscure, was not specific for mitochondrial-addressing sequences.  相似文献   

6.
Most of the mitochondrial proteins are synthesized in the cytoplasm as precursors which are then translocated into the organelle. These precursors have a NH2-terminal extension which functions as a mitochondrial targeting signal. The import process through mitochondrial membranes is voltage-dependent; its mechanism is still unknown. Translocation has been proposed to occur through specific channels, thus, indicating the interest of the study of mitochondrial ionic channels. Two anion channels with different electrical characteristics have been described in the outer and the inner membranes. Using the technique of "Tip-Dip", we have shown the existence of a cation channel of large conductance in mitochondria. The characteristics of this channel differ from that of the other mitochondrial anion channels. A positively charged 13-residue synthetic peptide, with the sequence of the amino terminal extremity of the nuclear-coded subunit IV of yeast cytochrome C oxidase, induces a blockade of the cationic channel. From the characteristics of the blockade, it is likely that the channel could be permeable to the peptide. The specificity of this effect suggests that this channel might be involved in protein translocation.  相似文献   

7.
Applying the technique of 'tip-dip' to mitochondria, we have shown the existence in this organelle of a cationic channel of large conductance, which is blocked by a 13-residue peptide possessing the sequence of the N-terminal extremity of the cytochrome c oxidase subunit IV precursor. To study the submitochondrial localization of the channel, the effect of trypsin on isolated channels and on entire mitochondria were compared. One side of isolated channels is sensitive to trypsin, which eliminates the voltage dependence. Channels isolated from trypsinized mitochondria were devoid of voltage dependence and were blocked by the peptide. This suggests a localization of the channel on the outer membrane. Consistent with this hypothesis, the channel was observed with the highest frequency in outer membrane fractions purified by different procedures, either from bovine adrenal cortex or from rat liver mitochondria. Such a localization is also consistent with digitonin solubilization experiments. The channel was solubilized before the inner membrane marker, cytochrome c oxidase. The orientation of the channel was inferred from its trypsin sensitivity and its potential dependence: a transmembrane potential (inside negative) will close the channel.  相似文献   

8.
A multiple conductance channel (MCC) with a peak conductance of over 1 nS is recorded from mitoplasts (mitochondria with the inner membrane exposed) using patch-clamp techniques. MCC shares many general characteristics with other intracellular megachannels, many of which are weakly selective, voltage-dependent, and calcium sensitive. A role in protein import is suggested by the transient blockade of MCC by peptides responsible for targeting mitochondrial precursor proteins. MCC is compared with the peptide-sensitive channel of the outer membrane because of similarities in targeting peptide blockade. The pharmacology and regulation of MCC by physiological effectors are reviewed and compared with the properties of the pore hypothesized to be responsible for the mitochondrial inner membrane permeability transition.  相似文献   

9.
Bilayers were formed at the tip of microelectrodes from a suspension of proteoliposomes derived from wild-type and porin-deficient mutant yeast mitochondria. In both preparations, identical cationic channels of large conductance were recorded. This result rules out any relationship between this channel and the outer membrane voltage-dependent anion channel, the activity of which is carried by porin. The ionic selectivity and the voltage-dependence of the yeast cationic channel suggest that it is related to that recently described in mammalian mitochondria. This hypothesis is further supported by the fact that both channels are blocked by a mitochondrial addressing peptide.  相似文献   

10.
A voltage-dependent cationic channel of large conductance is observed in phospholipid bilayers formed by the tip-dip method from proteoliposomes derived from mitochondrial membranes. It is blocked by peptide M, a 13 residue peptide having the properties of a mitochondrial signal sequence. To verify the reliability of the experimental approach, mitochondrial membranes from bovine adrenal cortex or porin-deficient mutant yeast were either fused to planar bilayers or incorporated in giant liposomes which were studied by patch clamp. Cationic channels were found with both techniques. They had the same conductance levels and voltage-dependence as those which have been described using the tip-dip method. Moreover, they were similarly blocked by peptide M. The voltage-dependence of block duration was analyzed in planar bilayer and tip-dip records. Results strengthen the idea that peptide M might cross the channel. Other mitochondrial channels were observed in planar bilayers and patch clamp of giant liposomes. Because they were never detected in tip-dip records, they are likely to be inactivated at the surface monolayer used to form the bilayer in this type of experiment.  相似文献   

11.
Toxins from the venoms of scorpion, snake, and spider are valuable tools to probe the structure-function relationship of ion channels. In this investigation, a new toxin gene encoding the peptide ImKTx1 was isolated from the venom gland of the scorpion Isometrus maculates by constructing cDNA library method, and the recombinant ImKTx1 peptide was characterized physiologically. The mature peptide of ImKTx1 has 39 amino acid residues including six cross-linked cysteines. The electrophysiological experiments showed that the recombinant ImKTx1 peptide had a pharmacological profile where it inhibited Kv1.3 channel currents with IC(50) of 1.70 n± 1.35 μM, whereas 10 μM rImKTx1 peptide inhibited about 40% Kv1.1 and 42% Kv1.2 channel currents, respectively. In addition, 10 μM rImKTx1 had no effect on the Nav1.2 and Nav1.4 channel currents. Multiple sequence alignments showed that ImKTx1 had no homologous toxin peptide, but it was similar with Ca(2+) channel toxins from scorpion and spider in the arrangement of cysteine residues. These results indicate that ImKTx1 is a new Kv1.3 channel blocker with a unique primary structure. Our results indicate the diversity of K(+) channel toxins from scorpion venoms and also provide a new molecular template targeting Kv1.3 channel.  相似文献   

12.
The PSC (peptide-sensitive Channel), a cationic channel of large conductance, has been characterized in yeast and mammalian mitochondria by three different methods, tip-dip, patch clamp of giant liposomes, and planar bilayers. The yeast and mammalian PSC share the common property to be blocked by basic peptides such as pCyt OX IV (1–12)Y which contains the first 12 residues of the presequence of cytochromec oxidase subunit IV. The electrophysiological data are consistent with a translocation of the peptide through the pore. Analysis of the frequency of observation of the PSC in different fractions indicates that the channel is located in the outer mitochondrial membrane. Uptake measurements of iodinated peptides by intact mitochondria from a porin-less mutant show that the peptides are translocated through the outer membrane, presumably at the level of PSC. Among the peptides active on PSC, several, such as pCyt OX IV (1–22) and the reduced form of the mast cell degranulating peptide, induce an alteration of the voltage dependence or of the inactivation rate subsisting after washing and which is eliminated only by proteolysis of the interacting peptide. These irreversible effects may account for the variability of the properties of the PSC which would interact with cytosolic or intermembrane cations, peptides, or proteins, thus modulating the channel permeability. Finally, several lines of evidence suggest the participation of the PSC in protein translocation and some interaction with the general insertion pore of the outer membrane translocation machinery.  相似文献   

13.
A synthetic peptide patterned after the sequence of the inactivating ball domain of the Shaker B K(+) channel, the ShB peptide, fully restores fast inactivation in the deletion Shaker BDelta6-46 K(+) channel, which lacks the constitutive ball domains. On the contrary, a similar peptide in which tyrosine 8 is substituted by the secondary structure-disrupting d-tyrosine stereoisomer does not. This suggests that the stereoisomeric substitution prevents the peptide from adopting a structured conformation when bound to the channel during inactivation. Moreover, characteristic in vitro features of the wild-type ShB peptide such as the marked propensity to adopt an intramolecular beta-hairpin structure when challenged by anionic phospholipid vesicles, a model target mimicking features of the inactivation site in the channel protein, or to insert into their hydrophobic bilayers, are lost in the d-tyrosine-containing peptide, whose behavior is practically identical to that of noninactivating peptide mutants. In the absence of high resolution crystallographic data on the inactivated channel/peptide complex, these latter findings suggest that the structured conformation required for the peptide to promote channel inactivation, as referred to above, is likely to be beta-hairpin.  相似文献   

14.
Import of proteins into mitochondria occurs by coordinated actions of preprotein translocases in the outer and inner membranes. Tim9 and Tim10 are translocase components of the intermembrane space, related to deafness-dystonia peptide 1 (DDP1). They coassemble into a hexamer, TIM9.10, which captures and chaperones precursors of inner membrane metabolite carriers as they exit the TOM channel in the outer membrane. The crystal structure of TIM9.10 reveals a previously undescribed alpha-propeller topology in which helical "blades" radiate from a narrow central pore lined with polar residues. The propeller blades are reminiscent of "tentacles" in chaperones Skp and prefoldin. In each TIM9.10 subunit, a signature "twin CX3C" motif forms two intramolecular disulfides. There is no obvious binding pocket for precursors, which we suggest employ the chaperone-like tentacles of TIM9.10 as surrogate lipid contacts. The first reported crystal structure of a mitochondrial translocase assembly provides insights into selectivity and regulation of precursor import.  相似文献   

15.
A hepta-peptide, Arg-Leu-Leu-Pro-Ser-Leu-Gly, which has a sequence involved in the extra peptides of mitochondrial proteins, was synthesized chemically. The peptide was found to bind specifically to mitochondria, but not to microsomes. The binding was blocked by pretreatment of mitochondria with trypsin but was not affected by the presence of apocytochrome c. The synthetic peptide inhibited the binding to mitochondria of the precursor protein of ATPase inhibitor, which was synthesized in vitro, but did not inhibit that of the precursor of the 9 K stabilizing factor, which has an entirely different extra-peptide sequence. The peptide also did not inhibit the binding of apocytochrome c. These results suggest the existence of a common protein receptor on mitochondrial membranes that facilitates entrance of a group of mitochondrial precursor proteins, including pre-ATPase inhibitor.  相似文献   

16.
Partially purified fractions of dihydropyridine and phenylalkylamine receptors associated with voltage-dependent calcium channels in rabbit skeletal muscle were found to contain two glycopeptides of similar molecular weight. A peptide of approximately 165 kDa was photoaffinity labelled with an arylazido-phenylalkylamine Ca channel inhibitor and also was phosphorylated with cAMP-dependent protein kinase. Another peptide of 170 kDa could be distinguished from the 165 kDa peptide by peptide mapping and differences in electrophoretic mobility. The results suggest that the 165 kDa peptide contains the sites responsible for regulation of calcium channel activity by calcium channel inhibitors as well as by neurotransmitters that regulate its activity in a cAMP-dependent manner.  相似文献   

17.
Integrated light-scattering (ILS) spectroscopy was used to monitor the binding of the colicin E1 channel peptide to POPC:POPG large unilamellar vesicles (LUV; 60:40, mol:mol) at acidic pH (3.5). Binding conditions were chosen such that nearly all of the channel peptide was bound to the vesicles with little free peptide remaining in solution. The increase in vesicle size upon the insertion of the channel peptide was measured by performing a discrete inversion technique on data obtained from an ILS spectrometer. Vesicle size number distributions were determined for five different systems having peptide/vesicle ratios of approximately 0, 77, 154, 206, and 257. The experiment was repeated four times (twice at two different vesicle concentrations) to determine reproducibility. The relative changes in vesicle radius upon peptide binding to the membrane vesicles was remarkably reproducible even though these changes represented only a few nanometers. A comparison of vesicle size number distributions in the absence of bound peptide was made between ILS and dynamic light scattering (DLS) data and showed similar results. However, DLS was incapable of detecting the small changes due to peptide-induced vesicle swelling. The membrane-bound volume of the colicin E1 channel peptide was approximately 177 +/- 22 nm3. These data indicate that in the absence of a membrane potential (closed channel state) the colicin E1 channel peptide inserts into the membrane resulting in a significant displacement of the lipid bilayer as evidenced from the dose-dependent increase in the vesicle radius.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have determined a 2.1 A crystal structure for human mitochondrial ClpP (hClpP), the proteolytic component of the ATP-dependent ClpXP protease. HClpP has a structure similar to that of the bacterial enzyme, with the proteolytic active sites sequestered within an aqueous chamber formed by face-to-face assembly of the two heptameric rings. The hydrophobic N-terminal peptides of the subunits are bound within the narrow (12 A) axial channel, positioned to interact with unfolded substrates translocated there by the associated ClpX chaperone. Mutation or deletion of these residues causes a drastic decrease in ClpX-mediated protein and peptide degradation. Residues 8-16 form a mobile loop that extends above the ring surface and is also required for activity. The 28 amino acid C-terminal domain, a unique feature of mammalian ClpP proteins, lies on the periphery of the ring, with its proximal portion forming a loop that extends out from the ring surface. Residues at the start of the C-terminal domain impinge on subunit interfaces within the ring and affect heptamer assembly and stability. We propose that the N-terminal peptide of ClpP is a structural component of the substrate translocation channel and may play an important functional role as well.  相似文献   

19.
A R Merrill  W A Cramer 《Biochemistry》1990,29(37):8529-8534
The voltage dependence of channel activity of the bactericidal protein colicin E1 was found to be correlated with insertion into the membrane bilayer of a specific segment of the 178-residue COOH-terminal thermolytic colicin channel peptide. The insertion into the bilayer was detected by an increase in labeling by one of two different lipophilic photoaffinity probes or by a decrease in iodination of peptide tyrosines from the external solution. Imposition of a potassium diffusion potential of -100 mV resulted in an increase of 35-60% in the labeling of the peptide by the lipophilic probe in the bilayer and a concomitant decrease in labeling of Tyr residues in the peptide by the iodination reagent in the external solution. The change in labeling decreased upon dissipation of the membrane potential with a half-time of about 1 min. The labeling change was localized to a 36-residue peptide segment bounded by alanine-425 and by tryptophan-460. This segment containing seven positively charged residues at low pH is a voltage-sensitive region that inserts into the membrane bilayer when the channel is turned on by the potential and is extruded from it when the voltage is removed and the channel is turned off.  相似文献   

20.
Mutations in various voltage gated cardiac ion channels are the cause of different forms of long QT syndrome (LQTS), which is an inherited arrhythmic disorder marked as a prolonged QT interval on electrocardiogram. Of these LQTS1 is associated with mutations in the gene encoding KCNQ1 (KvLQT1) channel. One responsible mutation, G269S, in the S5 segment of KvLQT1, that affects the proper expression and function of channel protein leads to LQTS1. Our objective was to study how G269S mutation interferes with the structure and function of a synthetic S5 segment of KvLQT1 channel. One wild type 22-residue peptide and another mutant peptide of the same length with G269S mutation, derived from the S5 segment were synthesized and labeled with fluorescent probes. The mutant peptide exhibited lower affinity towards phospholipid vesicles as compared to the wild type peptide and showed impaired assembly and localization onto the lipid vesicles as evidenced by membrane-binding, energy transfer and proteolytic cleavage experiments. Loss in the helical content of S5 mutant peptide in membrane-mimetic environments was observed. Furthermore, it was observed that G269S mutation significantly inhibited the ability of S5 peptide to permeabilize the lipid vesicles. The present studies show the basis of change in function of the selected S5 segment as a result of G269S mutation which is associated with LQT1 syndrome. We speculate that the structural and functional changes related to the glycine to serine amino acid substitution in the S5 segment may also influence the activity of the whole KvLQT1 channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号