首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from 'maverick' genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the 'maverick' genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear 'Ascomycetes-specific'. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the 'Ascomycetes-specific' genes tend to diverge more rapidly in evolution than that of other genes. Half of the 'Ascomycetes-specific' genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them.  相似文献   

2.
The genome of the diploid hemiascomycetous yeast Candida tropicalis, an opportunistic human pathogen and an important organism for industrial applications, was explored by the analysis of 2541 Random Sequenced Tags (RSTs) covering about 20% of its genome. Comparison of these sequences with Saccharomyces cerevisiae and other species permitted the identification and the analysis of a total of more than 1000 novel genetic elements of C. tropicalis. Moreover, the present study confirms that in C. tropicalis, the rare CUG codon is read as a serine and not a leucine. The sequences have been deposited at EMBL with the accession numbers AL438875-AL441602.  相似文献   

3.
As part of a comparative genomics project on 13 hemiascomycetous yeasts, the Pichia angusta type strain was studied using a partial random sequencing strategy. With coverage of 0.5 genome equivalents, about 2500 novel protein-coding genes were identified, probably corresponding to more than half of the P. angusta protein-coding genes, 6% of which do not have homologs in Saccharomyces cerevisiae. Some of them contain one or two introns, on average three times shorter than those in S. cerevisiae. We also identified 28 tRNA genes, a few retrotransposons similar to Ty5 of S. cerevisiae, solo long terminal repeats, the whole ribosomal DNA cluster, and segments of mitochondrial DNA. The P. angusta sequences were deposited in EMBL under the accession numbers AL430961 to AL436044.  相似文献   

4.
A genomic exploration of Kluyveromyces thermotolerans was performed by random sequence tag (RST) analysis. We sequenced 2653 RSTs corresponding to inserts sequenced from both ends. We performed a systematic comparison with a complete set of proteins from Saccharomyces cerevisiae, other completely sequenced genomes and SwissProt. We identified six mitochondrial genes and 1358-1496 nuclear genes by comparison with S. cerevisiae. In addition, 25 genes were identified by comparison with other organisms. This corresponds to about 24% of the estimated gene content of this organism. A lower level of conservation is observed with orthologues to genes of S. cerevisiae previously classified as orphans. Gene order was found to be conserved between S. cerevisiae and K. thermotolerans in 56.5% of studied cases.  相似文献   

5.
This paper reports the genomic analysis of strain CBS732 of Zygosaccharomyces rouxii, a homothallic diploid yeast. We explored the sequences of 4934 random sequencing tags of about 1 kb in size and compared them to the Saccharomyces cerevisiae gene products. Approximately 2250 nuclear genes, 57 tRNAs, the rDNA locus, the endogenous pSR1 plasmid and 15 mitochondrial genes were identified. According to 18S and 25S rRNA cladograms and to synteny analysis, Z. rouxii could be placed among the S. cerevisiae sensu lato yeasts.  相似文献   

6.
The generation of sequencing data for the hemiascomycetous yeast random sequence tag project was performed using the procedures established at GENOSCOPE. These procedures include a series of protocols for the sequencing reactions, using infra-red labelled primers, performed on both ends of the plasmid inserts in the same reaction tube, and their analysis on automated DNA sequencers. They also include a package of computer programs aimed at detecting potential assignation errors, selecting good quality sequences and estimating their useful length.  相似文献   

7.
By analyzing 2830 random sequence tags (RSTs), totalling 2.7 Mb, we explored the genome of the marine, osmo- and halotolerant yeast, Debaryomyces hansenii. A contig 29 kb in length harbors the entire mitochondrial genome. The genes encoding Cox1, Cox2, Cox3, Cob, Atp6, Atp8, Atp9, several subunits of the NADH dehydrogenase complex 1 and 11 tRNAs were unambiguously identified. An equivalent number of putative transposable elements compared to Saccharomyces cerevisiae were detected, the majority of which are more related to higher eukaryote copia elements. BLASTX comparisons of RSTs with databases revealed at least 1119 putative open reading frames with homology to S. cerevisiae and 49 to other genomes. Specific functions, including transport of metabolites, are clearly over-represented in D. hansenii compared to S. cerevisiae, consistent with the observed difference in physiology of the two species. The sequences have been deposited with EMBL under the accession numbers AL436045-AL438874.  相似文献   

8.
We have analyzed the evolution of chromosome maps of Hemiascomycetes by comparing gene order and orientation of the 13 yeast species partially sequenced in this program with the genome map of Saccharomyces cerevisiae. From the analysis of nearly 8000 situations in which two distinct genes having homologs in S. cerevisiae could be identified on the sequenced inserts of another yeast species, we have quantified the loss of synteny, the frequency of single gene deletion and the occurrence of gene inversion. Traces of ancestral duplications in the genome of S. cerevisiae could be identified from the comparison with the other species that do not entirely coincide with those identified from the comparison of S. cerevisiae with itself. From such duplications and from the correlation observed between gene inversion and loss of synteny, a model is proposed for the molecular evolution of Hemiascomycetes. This model, which can possibly be extended to other eukaryotes, is based on the reiteration of events of duplication of chromosome segments, creating transient merodiploids that are subsequently resolved by single gene deletion events.  相似文献   

9.
We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.  相似文献   

10.
11.
The identification of molecular evolutionary mechanisms in eukaryotes is approached by a comparative genomics study of a homogeneous group of species classified as Hemiascomycetes. This group includes Saccharomyces cerevisiae, the first eukaryotic genome entirely sequenced, back in 1996. A random sequencing analysis has been performed on 13 different species sharing a small genome size and a low frequency of introns. Detailed information is provided in the 20 following papers. Additional tables available on websites describe the ca. 20000 newly identified genes. This wealth of data, so far unique among eukaryotes, allowed us to examine the conservation of chromosome maps, to identify the 'yeast-specific' genes, and to review the distribution of gene families into functional classes. This project conducted by a network of seven French laboratories has been designated 'Génolevures'.  相似文献   

12.
Minisatellites are DNA tandem repeats exhibiting size polymorphism among individuals of a population. This polymorphism is generated by two different mechanisms, both in human and yeast cells, "replication slippage" during S-phase DNA synthesis and "repair slippage" associated to meiotic gene conversion. The Saccharomyces cerevisiae genome contains numerous natural minisatellites. They are located on all chromosomes without any obvious distribution bias. Minisatellites found in protein-coding genes have longer repeat units and on the average more repeat units than minisatellites in noncoding regions. They show an excess of cytosines on the coding strand, as compared to guanines (negative GC skew). They are always multiples of three, encode serine- and threonine-rich amino acid repeats, and are found preferably within genes encoding cell wall proteins, suggesting that they are positively selected in this particular class of genes. Genome-wide, there is no statistically significant association between minisatellites and meiotic recombination hot spots. In addition, minisatellites that are located in the vicinity of a meiotic hot spot are not more polymorphic than minisatellites located far from any hot spot. This suggests that minisatellites, in S. cerevisiae, evolve probably by strand slippage during replication or mitotic recombination. Finally, evolution of minisatellites among hemiascomycetous yeasts shows that even though many minisatellite-containing genes are conserved, most of the time the minisatellite itself is not conserved. The diversity of minisatellite sequences found in orthologous genes of different species suggests that minisatellites are differentially acquired and lost during evolution of hemiascomycetous yeasts at a pace faster than the genes containing them.  相似文献   

13.
14.
Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts   总被引:1,自引:0,他引:1  
Transfer of fragments of mtDNA to the nuclear genome is a general phenomenon that gives rise to NUMTs (NUclear sequences of MiTochondrial origin). We present here the first comparative analysis of the NUMT content of entirely sequenced species belonging to a monophyletic group, the hemiascomycetous yeasts ( Candida glabrata, Kluyveromyces lactis, Kluyveromyces thermotolerans, Debaryomyces hansenii and Yarrowia lipolytica , along with the updated NUMT content of Saccharomyces cerevisiae ). This study revealed a huge diversity in NUMT number and organization across the six species. Debaryomyces hansenii harbors the highest number of NUMTs (145), half of which are distributed in numerous large mosaics of up to eight NUMTs arising from multiple noncontiguous mtDNA fragments inserted at the same chromosomal locus. Most NUMTs, in all species, are found within intergenic regions including seven NUMTs in pseudogenes. However, five NUMTs overlap a gene, suggesting a positive impact of NUMTs on protein evolution. Contrary to the other species, K. lactis and K. thermotolerans harbor only a few diverged NUMTs, suggesting that mitochondrial transfer to the nuclear genome has decreased or ceased in these phylogenetic branches. The dynamics of NUMT acquisition and loss are illustrated here by their species-specific distribution.  相似文献   

15.
A total of 214 members of the sugar porter (SP) family (TC 2.A.1.1) from eight hemiascomycetous yeasts: Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Ashbya (Eremothecium) gossypii, Debaryomyces hansenii, Yarrowia lipolytica, Candida albicans and Pichia stipitis, were identified. The yeast SPs were classified in 13 different phylogenetic clusters. Specific sugar substrates could be allocated to nine phylogenetic clusters, including two novel TC clusters that are specific to fungi, i.e. the glycerol:H(+) symporter (2.A.1.1.38) and the high-affinity glucose transporter (2.A.1.1.39). Four phylogenetic clusters are identified by the preliminary fifth number Z23, Z24, Z25 and Z26 and the substrates of their members remain undetermined. The amplification of the SP clusters across the Hemiascomycetes reflects adaptation to specific carbon and energy sources available in the habitat of each yeast species.  相似文献   

16.
Frequently, although not exclusively, multidrug resistance (MDR) results from the action of drug-efflux pumps, which are thought to be able to catalyze the active expulsion of several unrelated cytotoxic compounds out of the cell or their intracellular partitioning. The transporters of the major facilitator superfamily (MFS) presumably involved in MDR belong to the 12-spanner drug:H(+) antiporter DHA1 or to the 14- spanner drug:H(+) antiporter DHA2 families. The expression of most Saccharomyces cerevisiae DHA1 family members was found to confer broad chemoprotection. The evolution of the hemiascomycetous DHA1 proteins, belonging to the Génolevures GL3C007 family, was studied using a combined phylogenetic and gene neighborhood approach. The phylogenetic analysis of 189 DHA1 proteins belonging to the genome of 13 hemiascomycetous species identified 20 clusters. Eleven clusters contained no S. cerevisiae members. The phylogenetic clusters were analyzed by the IONS method developed for Identification of Orthologues by Neighborhood and Similarity. This allowed reconstructing the evolutionary history of most DHA1 members within 10 main gene lineages, spanning the whole hemiascomycetes clade, encompassing an evolutionary history of about 350 million years. In addition, five other more species specific lineages, spanning only two hemiascomycetous species, were identified. It is concluded that 57 out of the 143 members of the DHA1 hemiascomycetous members originated from gene duplication events. In half of these duplicates, the two members belong to different phylogenetic clusters, indicating that at least one of them has sufficiently differentiated to provide potential novel functions to this complex family from which most physiological substrates remain unknown.  相似文献   

17.
The objective of this study has been to gather data on genomic stability of baker's yeast strains during long-term mitotic growth under restrictive conditions so that comparisons could be made to other studies indicating genomic instability during meiosis. The work describes the analysis of mitotic stability of the nuclear and mitochondrial genomes in the baker's yeast strain V1 during incubation in continuous culture for 190 generations (300 days). The cells were cultured in complete medium containing 2% glucose and 8 to 12% ethanol, as a mutagenic agent specific for mtDNA. The high concentration of ethanol severely limited the growth rate of the cells. DNA samples were monitored for chromosomal pattern, polymorphisms in selected nuclear genes (SUC2, MALIT, ADH1) and mobile genetic elements (Ty1 and Y'), and for RFLPs in mtDNA. The results show that both the nuclear and mitochondrial genomes of grande cells were very stable. However, the frequency of petite mutants in the population varied dramatically during the course of the experiment, reaching as high as 87% petite during the first 27 days of the experiment and declining to 5.8% petite at the end. This decline can be attributed to selection against petite mutants in media containing high concentrations of ethanol. Moreover, when samples and the parental strain were compared at the end of the experiment, no change could be observed in parameters such as their growth rate in different media, capacity to leave doughs, viability in ethanol or frequency of petite mutants. Results therefore indicated that the majority of the cells in the population were very similar to the parental throughout the experiments, with no apparent molecular or phenotypical changes.  相似文献   

18.
The spliceosome is a large, dynamic ribonuclear protein complex, required for the removal of intron sequences from newly synthesized eukaryotic RNAs. The spliceosome contains five essential small nuclear RNAs (snRNAs): U1, U2, U4, U5, and U6. Phylogenetic comparisons of snRNAs from protists to mammals have long demonstrated remarkable conservation in both primary sequence and secondary structure. In contrast, the snRNAs of the hemiascomycetous yeast Saccharomyces cerevisiae have highly unusual features that set them apart from the snRNAs of other eukaryotes. With an emphasis on the pathogenic yeast Candida albicans, we have now identified and compared snRNAs from newly sequenced yeast genomes, providing a perspective on spliceosome evolution within the hemiascomycetes. In addition to tracing the origins of previously identified snRNA variations present in Saccharomyces cerevisiae, we have found numerous unexpected changes occurring throughout the hemiascomycetous lineages. Our observations reveal interesting examples of RNA and protein coevolution, giving rise to altered interaction domains, losses of deeply conserved snRNA-binding proteins, and unique snRNA sequence changes within the catalytic center of the spliceosome. These same yeast lineages have experienced exceptionally high rates of intron loss, such that modern hemiascomycetous genomes contain introns in only approximately 5% of their genes. Also, the splice site sequences of those introns that remain adhere to an unusually strict consensus. Some of the snRNA variations we observe may thus reflect the altered intron landscape with which the hemiascomycetous spliceosome must contend.  相似文献   

19.
Genomic analysis of synaptotagmin genes.   总被引:5,自引:0,他引:5  
M Craxton 《Genomics》2001,77(1-2):43-49
I used TBLASTn to probe DNA sequence databases with a consensus peptide sequence corresponding to the most highly conserved region of the rodent synaptotagmin (Syt) gene family, which is within the C2B domain. I found human homologues for all known rodent genes, and found six further human genomic loci which encode potential family members. I found eight potential family members in Caenorhabditis elegans, six in Drosophila melanogaster, and four in Arabidopsis thaliana. The C. elegans Syt1 homologue uniquely encodes two alternative C2B exons, one or the other of which is expressed at a time. Comparison of the genomic structures of the Syt genes makes clear the different phylogenies of the different subgroups. Knowledge of the genomic structures will aid the systematic investigation of alternative splicing in Syt genes.  相似文献   

20.
Comparative study on the identification of food-borne yeasts.   总被引:2,自引:1,他引:1       下载免费PDF全文
T Trk  A D King  Jr 《Applied microbiology》1991,57(4):1207-1212
Morphologically distinct yeast colonies from partially and fully processed fruits and vegetables were isolated over a 3-year period. Identification of 239 strains was achieved by using standard methods, commercial identification kits (API 20C and API YEAST-IDENT), and a simplified system for food-borne yeasts. The identified strains of fruit origin represented 36 species belonging to 19 genera. Among strains of vegetable origin, 34 species representing 17 genera were identified. The simplified identification system and the conventional method provided the same results in 80% of the cases. The commercial identification kits were easy to use but were not appropriate for food-borne yeast species. Computer-assisted identification was helpful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号