首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) is a naturally occurring cyclopentenone metabolite of PGD(2) that possesses both peroxisome proliferator-activated receptor gamma (PPAR-gamma)-dependent and PPAR-gamma-independent anti-inflammatory properties. Recent studies suggest that cyclopentenone PGs may play a role in the down-regulation of inflammation-induced immune responses. In this study, we report that 15d-PGJ(2) as well as synthetic PPAR-gamma agonists inhibit lymphocyte proliferation. However, only 15d-PGJ(2), but not the specific PPAR-gamma activators, induce lymphocyte apoptosis. We found that blocking of the death receptor pathway in Fas-associated death domain(-/-) or caspase-8(-/-) Jurkat T cells has no effect on apoptosis induction by 15d-PGJ(2). Conversely, overexpression of Bcl-2 or Bcl-x(L) completely inhibits the initiation of apoptosis, indicating that 15d-PGJ(2)-mediated apoptosis involves activation of the mitochondrial pathway. In line with these results, 15d-PGJ(2) induces mitochondria disassemblage as demonstrated by dissipation of mitochondrial transmembrane potential (Deltapsi(m)) and cytochrome c release. Both of these events are partially inhibited by the broad spectrum caspase inhibitor benzyloxycarbonil-Val-Ala-Asp-fluoromethylketone, suggesting that caspase activation may amplify the mitochondrial alterations initiated by 15d-PGJ(2). We also demonstrate that 15d-PGJ(2) potently stimulates reactive oxygen species production in Jurkat T cells, and Deltapsi(m) loss induced by 15d-PGJ(2) is prevented by the reactive oxygen species scavenger N-acetyl-L-cysteine. In conclusion, our data indicate that cyclopentenone PGs like 15d-PGJ(2) may modulate immune responses even independent of PPAR-gamma by activating the mitochondrial apoptosis pathway in lymphocytes in the absence of external death receptor signaling.  相似文献   

2.
Cancer cell invasion and metastasis require the concerted action of several proteases that degrade extracellular matrix proteins and basement membranes. Recent reports suggest the plasminogen activator system plays a critical role in pancreatic cancer biology. In the present study, we determined the contribution of the plasminogen activator system to pancreatic cancer cell invasion in vitro. Moreover, the effect of peroxisome proliferator-activated receptor (PPAR)-gamma ligands, which are currently in clinical use as antidiabetic drugs and interestingly seem to display antitumor activities, on pancreatic cancer cell invasion and the plasminogen activator system was assessed. Expression of components of the plasminogen activator system [i.e., urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1, and uPA receptor] was detected in six human pancreatic cancer cell lines. Inhibition of urokinase activity by specific synthetic compounds reduced baseline pancreatic cancer cell invasion. The PPAR-gamma ligands 15-deoxy-Delta12,14-prostaglandin J2 and ciglitazone also attenuated pancreatic cancer cell invasion. This effect was abrogated by dominant-negative PPAR-gamma receptors and pharmacologic PPAR-gamma inhibitors. Moreover, activation of PPAR-gamma by ligands increased plasminogen activator inhibitor-1 and decreased uPA levels in pancreatic cancer cells, and this was accompanied by a reduction in total urokinase activity. The present study shows that the plasminogen activator system plays an integral role in pancreatic cancer cell invasion in vitro. Activation of the nuclear receptor PPAR-gamma by ligands reduced pancreatic cancer cell invasion, which was largely mediated by modulation of the plasminogen activator system. These findings further underscore the potential role of PPAR-gamma ligands as therapeutic agents in pancreatic cancer.  相似文献   

3.
Apoptosis at the site of rupture has been proposed to play a role in premature rupture of the fetal membranes, a condition associated with increased risk of neonatal sepsis and preterm birth. We investigated the ability of peroxisome proliferator-activated receptor (PPAR)-gamma ligands 15-deoxy-delta12,14PGJ2 (15d-PGJ2), delta12PGJ2, ciglitizone and rosiglitazone to induce apoptosis in the amnion-like WISH cell line. 15d-PGJ2 (10 microM) induced morphological characteristics of apoptosis within 2 h, with biochemical indices (caspase activation and substrate cleavage) following shortly after; maximum cell death (approximately 60%) was observed by 16 h, with an EC50) of approximately 7 microM 15d-PGJ2. Delta12-PGJ2 also induced apoptosis but was less potent and acted at a much slower rate. While ciglitizone also induced apoptosis, rosiglitazone had no effect on cell viability. The mechanism of induction of apoptosis by 15d-PGJ2 and delta12PGJ2, which may be independent of PPAR-gamma activation, requires further elucidation.  相似文献   

4.
Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G(1) to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer.  相似文献   

5.
Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs) resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF)-κB-p65 phosphorylation and cyclooxygenase (COX)-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER) stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor) to inhibit prostaglandin E2 (PGE2) production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE) protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.  相似文献   

6.
7.
R Prasad  M Vaid  SK Katiyar 《PloS one》2012,7(8):e43064
Pancreatic cancer is an aggressive malignancy that is frequently diagnosed at an advanced stage with poor prognosis. Here, we report the chemotherapeutic effects of bioactive proanthocyanidins from grape seeds (GSPs) as assessed using In Vitro and In Vivo models. Treatment of human pancreatic cancer cells (Miapaca-2, PANC-1 and AsPC-1) with GSPs In Vitro reduced cell viability and increased G2/M phase arrest of the cell cycle leading to induction of apoptosis in a dose- and time-dependent manner. The GSPs-induced apoptosis of pancreatic cancer cells was associated with a decrease in the levels of Bcl-2 and Bcl-xl and an increase in the levels of Bax and activated caspase-3. Treatment of Miapaca-2 and PANC-1 cells with GSPs also decreased the levels of phosphatidylinositol-3-kinase (PI3K) and phosphorylation of Akt at ser(473). siRNA knockdown of PI3K from pancreatic cancer cells also reduced the phosphorylation of Akt. Further, dietary administration of GSPs (0.5%, w/w) as a supplemented AIN76A control diet significantly inhibited the growth of Miapaca-2 pancreatic tumor xenografts grown subcutaneously in athymic nude mice, which was associated with: (i) inhibition of cell proliferation, (ii) induction of apoptosis of tumor cells, (iii) increased expression of Bax, reduced expression of anti-apoptotic proteins and activation of caspase-3-positive cells, and (iv) decreased expression of PI3K and p-Akt in tumor xenograft tissues. Together, these results suggest that GSPs may have a potential chemotherapeutic effect on pancreatic cancer cell growth.  相似文献   

8.
The research described herein evaluates the expression and functional significance of peroxisome proliferator activator receptor-gamma (PPAR-gamma) on B-lineage cells. Normal mouse B cells and a variety of B lymphoma cells reflective of stages of B cell differentiation (e.g., 70Z/3, CH31, WEHI-231, CH12, and J558) express PPAR-gamma mRNA and, by Western blot analysis, the 67-kDa PPAR-gamma protein. 15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), a PPAR-gamma agonist, has a dose-dependent antiproliferative and cytotoxic effect on normal and malignant B cells as shown by [(3)H]thymidine and 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assays. Only PPAR-gamma agonists (thiazolidinediones), and not PPAR-alpha agonists, mimicked the effect of 15d-PGJ(2) on B-lineage cells, indicating that the mechanism by which 15d-PGJ(2) negatively affects B-lineage cells involves in part PPAR-gamma. The mechanism by which PPAR-gamma agonists induce cytotoxicity is via apoptosis, as shown by annexin V staining and as confirmed by DNA fragmentation detected using the TUNEL assay. Interestingly, addition of PGF(2alpha), which was not known to affect lymphocytes, dramatically attenuated the deleterious effects of PPAR-gamma agonists on B lymphomas. Surprisingly, 15d-PGJ(2) induced a massive increase in nuclear mitogen-activated protein kinase activation, and pretreatment with PGF(2alpha) blunted the mitogen-activated protein kinase activation. This is the first study evaluating PPAR-gamma expression and its significance on B lymphocytes. PPAR-gamma agonists may serve as a counterbalance to the stimulating effects of other PGs, namely PGE(2), which promotes B cell differentiation. Finally, the use of PGs, such as 15d-PGJ(2), and synthetic PPAR-gamma agonists to induce apoptosis in B-lineage cells may lead to the development of novel therapies for fatal B lymphomas.  相似文献   

9.
Human epidermal growth factor receptor 2 (ErbB2) amplification and overexpression has been seen in many cancer types including non-small cell lung cancer (NSCLC). Thus, ErbB2 is an important target for cancer therapies. Increased ErbB2 expression has been associated with drug resistance in cancer cells. Herceptin is a humanized monoclonal antibody that targets the extracellular domain of ErbB2. In this study, we aimed to block ErbB2 signaling with Herceptin and assess cytotoxicity and effects on apoptosis, oxidative stress, nuclear factor kappa-B (NF-kB), and Survivin expression in Calu-3 cell line. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were used to assess cell viability as a marker of proliferation. Acridine orange/ethidium bromide (AO/EB) staining and caspase 3/7 activity were measured as the markers of apoptosis. The relative expressions of NF-kB-p50 and Survivin mRNAs were evaluated. Activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), and the levels of glutathione (GSH) and reactive oxygen species (ROS) were determined in a time- and dose-dependent manner. Our results show that Herceptin treatment inhibits cell proliferation and activates apoptosis but without effects on Survivin and NF-kB expression in Calu-3 cell line. Intracellular glutathione levels and SOD and CAT activities were decreased in a time- and dose-dependent manner associated with oxidative stress. Also, ROS were increased at 24 h. These results provide evidence that Herceptin can be used as a cytotoxic and apoptotic agent in NSCLC.  相似文献   

10.
We investigated the antitumor effect and mechanism of hematoporphyrin monomethyl ether-mediated photodynamic therapy (HMME-PDT) in sarcomas. Intracellular uptake of HMME by osteosarcoma cells (LM8 and K7) was time- and dose-dependent, while this was not observed for myoblast cells (C2C12) and fibroblast cells (NIH/3T3). HMME-PDT markedly inhibited the proliferation of sarcoma cell lines (LM8, MG63, Saos-2, SW1353, TC71, and RD) (P<0.05), and the killing effect was improved with increased HMME concentration and energy intensity. Flow cytometry analysis revealed that LM8, MG63, and Saos-2 cells underwent apoptosis after treatment with HMME-PDT. Additionally, apoptosis was induced after HMME-PDT in a three-dimensional culture of osteosarcoma cells. Hoechst 33342 staining confirmed apoptosis. Cell death caused by PDT was rescued by an irreversible inhibitor (Z-VAD-FMK) of caspase. However, cell viability was not markedly decreased compared with the HMME-PDT group. Expression levels of caspase-1, caspase-3, caspase-6, caspase-9, and poly (ADP-ribose) polymerase (PARP) proteins were markedly up-regulated in the treatment groups and increased with HMME concentration as determined by western blot analysis. In vivo, tumor volume markedly decreased at 7–16 days post-PDT. Hematoxylin and eosin staining revealed widespread necrotic and infiltrative inflammatory cells in the HMME-PDT group. Immunohistochemistry analysis also showed that caspase-1, caspase-3, caspase-6, caspase-9, and PARP proteins were significantly increased in the HMME-PDT group. These results indicate that HMME-PDT has a potent killing effect on osteosarcoma cells in vitro and significantly inhibits tumor growth in vivo, which is associated with the caspase-dependent pathway.  相似文献   

11.
The EGF (epidermal growth factor) receptor-tyrosine kinase inhibitor ZD1839 (Gefitinib, 'Iressa') blocks the cell signaling pathways involved in cell proliferation, survival, and angiogenesis in various cancer cells. TNF-related death apoptosis inducing ligand (TRAIL) acts as an anticancer agent. We investigated the antitumor effects of ZD1839 alone or in combination with TRAIL against human esophageal squamous cell cancer (ESCC) lines. Although all ESCC cells expressed EGF receptor at a protein level, the effect of ZD1839 on cell growth did not correlate with the level of EGFR expression and phosphorylation of EGF receptor protein in ESCC lines. ZD1839 caused a dose-dependent growth arrest at G0-G1 phase associated with increased p27 expression. As TE8 cells are resistant to TRAIL, we tested whether ZD1839 combined with TRAIL induced apoptosis of TE8 cells via the inhibition of EGF receptor signaling by ZD1839. ZD1839 inhibited the phosphorylation of Akt, and enhanced TRAIL-induced apoptosis via activation of caspase-3 and caspase-9, and inactivation of Bcl-xL. Our results indicated that ZD1839 has anti-cancer properties against human esophageal cancer cells. ZD1839 also augmented the anti-cancer activity of TRAIL, even in TRAIL-resistant tumors. These results suggest that treatment with ZD1839 and TRAIL may have potential in the treatment of ESCC patients.  相似文献   

12.
13.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

14.
15.
Apoptosis has been described in placental (trophoblast) tissues during both normal and abnormal pregnancies. We have studied the effects of the cyclopentenone prostaglandins (PGs) on trophoblast cell death using JEG3 choriocarcinoma cells. PGJ(2), Delta(12)PGJ(2), and 15-deoxy-Delta(12,14)-PGJ(2) (15dPGJ(2)) (10 microM) significantly reduced mitochondrial activity (MTT assay) over 16 h by 17.4 +/- 4.7%, 28 +/- 9.3%, and 62.5 +/- 2.8%, respectively (mean +/- sem), while PGA(2) and PGD(2) had no effect. The synthetic PPAR-gamma ligand ciglitizone (12.5 microM) had a potency similar to 15dPGJ(2) (69 +/- 3% reduction). Morphological examination of cultures treated with PGJ(2) and its derivatives revealed the presence of numerous cells with dense, pyknotic nuclei, a hallmark of apoptosis. FACS analysis revealed an abundance (approximately 40%) of apoptotic cells after 16-h treatment with 15dPGJ(2) (10 microM). The caspase inhibitor ZVAD-fmk (5 microM) significantly diminished the apoptotic effects of Delta(12)PGJ(2) and 15dPGJ(2). JEG3 cells expressed PPAR-gamma mRNA by Northern analysis. These novel findings imply a role for PPAR-gamma ligands in various processes associated with pregnancy and parturition.  相似文献   

16.
Isoalantolactone, a sesquiterpene lactone compound possesses antifungal, antibacteria, antihelminthic and antiproliferative activities. In the present study, we found that isoalantolactone inhibits growth and induces apoptosis in pancreatic cancer cells. Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of reactive oxygen species, cardiolipin oxidation, reduced mitochondrial membrane potential, release of cytochrome c and cell cycle arrest at S phase. N-Acetyl Cysteine (NAC), a specific ROS inhibitor restored cell viability and completely blocked isoalantolactone-mediated apoptosis in PANC-1 cells indicating that ROS are involved in isoalantolactone-mediated apoptosis. Western blot study showed that isoalantolactone increased the expression of phosphorylated p38 MAPK, Bax, and cleaved caspase-3 and decreased the expression of Bcl-2 in a dose-dependent manner. No change in expression of phosphorylated p38 MAPK and Bax was found when cells were treated with isoalantolactone in the presence of NAC, indicating that activation of these proteins is directly dependent on ROS generation. The present study provides evidence for the first time that isoalantolactone induces ROS-dependent apoptosis through intrinsic pathway. Furthermore, our in vivo toxicity study demonstrated that isoalantolactone did not induce any acute or chronic toxicity in liver and kidneys of CD1 mice at dose of 100 mg/kg body weight. Therefore, isoalantolactone may be a safe chemotherapeutic candidate for the treatment of human pancreatic carcinoma.  相似文献   

17.
The compound(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1 H-inden-1-one(BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.  相似文献   

18.
19.
20.
Osteosarcoma (OS) is a conversant malignant bone tumor, commonly occurs in children and adolescents. Nimotuzuma is an epidermal growth factor receptor (EGRF) monoclonal antibody agent, which has been exploited in varied solid tumors. Nevertheless, the functions of Nimotuzuma in OS remain blurry. We attempted to disclose the impacts of Nimotuzuma on OS cells proliferation and apoptosis. OS MG-63 and U2OS cells were stimulated with the disparate doses of Nimotuzuma. Then, cell viability, cell cycle, and apoptosis were appraised through executing CCK-8 and flow cytometry assays. Moreover, the change of mitochondrial membrane potential (ΔΨm) was estimated via JC-1 fluorescent probe to further probe the impacts of Nimotuzuma on cell apoptosis. The proteins of cell apoptosis, cell cycle, and EGFR/PI3K/AKT were appraised via western blot. Eventually, Nimotuzuma together EGRF or PI3K inhibitor (LY294002) were utilized to dispose MG-63 to further uncover the latent mechanism. We found that Nimotuzuma remarkably repressed cell viability at a time- and dose-dependent manners in MG-63 and U2OS cells. The percentage of the S phase cells was evidently reduced by Nimotuzuma through regulating P21, Cyclin E1, and Cyclin D1. In addition, Nimotuzuma obviously evoked cell apoptosis, meanwhile elevated Bid, Bax, and cleaved-caspase-3. Further exploration showed that Nimotuzuma decreased ΔΨm in a dose-dependent manner in MG-63 and U2OS cells. Besides, we discovered the repressive functions of Nimotuzuma in OS cells proliferation and apoptosis via hindering the EGFR/PI3K/AKT pathway. These investigations testified that Nimotuzuma repressed cell growth by restraining the EGFR/PI3K/AKT pathway in OS cells, hinting the antitumor activity of Nimotuzuma in OS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号