首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants coordinate their development using long-distance signaling. The vascular system provides a route for long-distance movement, and specifically the xylem for root-to-shoot signaling. Root-to-shoot signals play roles communicating soil conditions, and these signals are important for agricultural water conservation. Using genetic approaches, the Arabidopsis bypass1 ( bps1 ) mutant, which over-produces a root-derived signal, was identified. Although bps1 mutants have both root and shoot defects, the shoot can develop normally if the roots are removed, and the mutant root is sufficient to induce arrest of the wild-type shoot. BYPASS1 encodes a protein with no functionally characterized domains, and BPS1- like genes are found in plant genomes, but not the genomes of animals. Analyses of hormone pathways indicate that the mobile compound that arises in bps1 roots requires carotenoid biosynthesis, but it is neither abscisic acid nor strigolactone. The current model suggests that BPS1 is required to prevent the synthesis of a novel substance that moves from the root to the shoot, where it modifies shoot growth by interfering with auxin signaling.  相似文献   

2.
Long-distance signaling is essential for coordination of plant development and environmental responses. We originally isolated a tiny mutant named bypass1 (bps1), which has defects in shoot and root development. The bps1 roots overproduce a mobile signal (bps signal) that arrests both root and shoot development. Our recent study demonstrated that all three BPS gene family members prevent ectopic synthesis of the same bps signal.bps multiple mutants show progressively more severe developmental defects. An embryogenesis analysis revealed abnormal cell divisions in all meristem lineages of bps triple mutants. These defects appear to be auxin independent, and arise prior to changes in PLT1 and PLT2 expression.  相似文献   

3.
Development is often coordinated by biologically active mobile compounds that move between cells or organs. Arabidopsis mutants with defects in the BYPASS1 (BPS1) gene overproduce an active mobile compound that moves from the root to the shoot and inhibits growth. Here, we describe two related Arabidopsis genes, BPS2 and BPS3. Analyses of single, double and triple mutants revealed that all three genes regulate production of the same mobile compound, the bps signal, with BPS1 having the largest role. The triple mutant had a severe embryo defect, including the failure to properly establish provascular tissue, the shoot meristem and the root meristem. Aberrant expression of PINFORMED1, DR5, PLETHORA1, PLETHORA2 and WUSCHEL-LIKE HOMEOBOX5 were found in heart-stage bps triple-mutant embryos. However, auxin-induced gene expression, and localization of the PIN1 auxin efflux transporter, were intact in bps1 mutants, suggesting that the primary target of the bps signal is independent of auxin response. Thus, the bps signal identifies a novel signaling pathway that regulates patterning and growth in parallel with auxin signaling, in multiple tissues and at multiple developmental stages.  相似文献   

4.
Plants coordinate their development using long-distance signaling. The vascular system provides a route for long-distance movement, and specifically the xylem for root-to-shoot signaling. Root-to-shoot signals play roles communicating soil conditions, and these signals are important for agricultural water conservation. Using genetic approaches, the Arabidopsis bypass1 (bps1) mutant, which over-produces a root-derived signal, was identified. Although bps1 mutants have both root and shoot defects, the shoot c...  相似文献   

5.
Plant architecture is regulated by endogenous developmental programs, but it can also be strongly influenced by cues derived from the environment. For example, rhizosphere conditions such as water and nutrient availability affect shoot and root architecture; this implicates the root as a source of signals that can override endogenous developmental programs. Cytokinin, abscisic acid, and carotenoid derivatives have all been implicated as long-distance signals that can be derived from the root. However, little is known about how root-derived signaling pathways are regulated. Here, we show that BYPASS1 (BPS1), an Arabidopsis gene of unknown function, is required to prevent constitutive production of a root-derived graft-transmissible signal that is sufficient to inhibit leaf initiation, leaf expansion, and shoot apical meristem activity. We show that this root-derived signal is likely to be a novel carotenoid-derived molecule that can modulate both root and shoot architecture.  相似文献   

6.
Regulation of Shoot and Root Development through Mutual Signaling   总被引:2,自引:0,他引:2  
Plants adjust their development in relation to the availability of nutrient sources. This necessitates signaling between root and shoot. Aside from the well-known systemic signaling processes mediated by auxin, cytokinin, and sugars, new pathways involving carotenoid-derived hormones have recently been identified. The auxin-responsive MAX pathway controls shoot branching through the biosynthesis of strigolactone in the roots. The BYPASS1 gene affects the production of an as-yet unknown carotenoid-derived substance in roots that promotes shoot development. Novel local and systemic mechanisms that control adaptive root development in response to nitrogen and phosphorus starvation were recently discovered. Notably, the ability of the NITRATE TRANSPORTER 1.1 to transport auxin drew for the first time a functional link between auxin, root development, and nitrate availability in soil. The study of plant response to phosphorus starvation allowed the identification of a systemic mobile miRNA. Deciphering and integrating these signaling pathways at the whole-plant level provide a new perspective for understanding how plants regulate their development in response to environmental cues.  相似文献   

7.
J C Cheng  K A Seeley    Z R Sung 《Plant physiology》1995,107(2):365-376
New cells are produced from the meristematic tissues located at the shoot and root tip throughout the life of higher plants. To investigate the genetic mechanism regulating meristematic activity, we isolated and characterized four single-gene, recessive mutants in Arabidopsis thaliana called root meristemless (rml). Complementation tests identified two RML loci; RML1 maps to chromosome IV and RML2 maps to chromosome III. These mutants produce normal embryonic roots that either did not undergo or experienced limited cell division following germination, resulting in primary roots of less than 2.0 mm in length. Mutants can produce lateral and adventitious roots, which can grow to a length comparable to the embryonic root and arrest, indicating that the growth arrest is unrelated to the embryonic dormancy process. Neither the addition of growth regulators to the media nor the removal of shoots can rescue mutant roots from growth arrest, indicating that the mutant phenotype is not caused by a shortage of known growth regulators or by a transmissible shoot inhibitor. Normal cell division ability in mutant embryo, shoot, and callus cells indicates that the RML gene functions are not part of the general cell division processes; rather, they are involved specifically in activating the cell division cycle in the root apical cells.  相似文献   

8.
The LATD gene of the model legume, Medicago truncatula, is required for the normal function of three meristems, i.e. the primary root, lateral roots and nitrogen-fixing nodules. In latd mutants, primary root growth eventually arrests, resulting in a disorganized root tip lacking a presumptive meristem and root cap columella cells. Lateral root organs are more severely affected; latd lateral roots and nodules arrest immediately after emerging from the primary root, and reveal a lack of organization. Here we show that the plant hormone, abscisic acid (ABA), can rescue the latd root, but not nodule, meristem defects. Growth on ABA is sufficient to restore formation of small, cytoplasm-rich cells in the presumptive meristem region, rescue meristem organization and root growth and formation of root cap columella cells. In contrast, inhibition of ethylene synthesis or signaling fails to restore latd primary root growth. We find that latd mutants have normal levels of ABA, but exhibit reduced sensitivity to the hormone in two other ABA-dependent processes: seed germination and stomatal closure. Together, these observations demonstrate that the latd mutant is defective in the ABA response and indicate a role for LATD-dependent ABA signaling in M. truncatula root meristem function.  相似文献   

9.
10.
The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root‐sourced ABA on root growth during water stress. Here, we tested whether foliage‐derived ABA could be transported to the roots, and whether this foliage‐derived ABA had an influence on root growth under well‐watered conditions. Using both application studies of deuterium‐labelled ABA and reciprocal grafting between wild‐type and ABA‐biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage‐derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA‐deficient scions suggest that foliage‐derived ABA inhibits root growth through the root growth‐inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage‐derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.  相似文献   

11.
Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS‐induced growth promotion facilitates rapid escape of the roots from non‐natural light. Meanwhile, long‐term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far‐red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot‐derived ABA signals induce a peroxidase‐mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark‐grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot‐to‐root ABA signaling links shoot phyB‐mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA‐mediated shoot‐to‐root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants.  相似文献   

12.
Adventitious roots are vital for water and nutrient assimilation by cereal crops because they comprise the bulk of the fibrous root system. We isolated and analyzed a rice mutant, adventitious rootless 2 (arl2), which failed to initiate adventitious root primordia during early development. Its seminal root produced fewer lateral roots than from the wild type. This mutant also exhibited pleiotropic phenotypes of longer and thicker seminal roots, a different morphology for the first leaf, delayed heading, and a greater tiller angle. Physiological experiments showed that exogenous auxin and ethylene could rescue adventitious root growth, a response opposite that for two previously reported mutants, arl1 and gnom1. Activity in the auxin signal pathway and the polar auxin transport system was normal for arl2. Compared with the wild type, arl2 plants showed enhanced sensitivity to ethephon but decreased sensitivity to AgNO3, an inhibitor of ethylene. Genetics analysis demonstrated that this mutant is controlled by a single dominant gene; ARL2 was mapped within a 100-kb interval on the short arm of chromosome 2.  相似文献   

13.

Background  

The Arabidopsis bypass1 (bps1) mutant root produces a biologically active mobile compound that induces shoot growth arrest. However it is unknown whether the root retains the capacity to synthesize the mobile compound, or if only shoots of young seedlings are sensitive. It is also unknown how this compound induces arrest of shoot growth. This study investigated both of these questions using genetic, inhibitor, reporter gene, and morphological approaches.  相似文献   

14.
Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development.  相似文献   

15.
Cline MG  Oh C 《Annals of botany》2006,98(4):891-897
BACKGROUND AND AIMS: Evidence from pea rms1, Arabidopsis max4 and petunia dad1 mutant studies suggest an unidentified carotenoid-derived/plastid-produced branching inhibitor which moves acropetally from the roots to the shoots and interacts with auxin in the control of apical dominance. Since the plant hormone, abscisic acid (ABA), known to inhibit some growth processes, is also carotenoid derived/plastid produced, and because there has been indirect evidence for its involvement with branching, a re-examination of the role of ABA in apical dominance is timely. Even though it has been determined that ABA probably is not the second messenger for auxin in apical dominance and is not the above-mentioned unidentified branching inhibitor, the similarity of their derivation suggests possible relationships and/or interactions. METHODS: The classic Thimann-Skoog auxin replacement test for apical dominance with auxin [0.5 % naphthalene acetic acid (NAA)] applied both apically and basally was combined in similar treatments with 1 % ABA in Ipomoea nil (Japanese Morning Glory), Solanum lycopersicum (Better Boy tomato) and Helianthus annuus (Mammoth Grey-striped Sunflower). KEY RESULTS: Auxin, apically applied to the cut stem surface of decapitated shoots, strongly restored apical dominance in all three species, whereas the similar treatment with ABA did not. However, when ABA was applied basally, i.e. below the lateral bud of interest, there was a significant moderate repression of its outgrowth in Ipomoea and Solanum. There was also some additive repression when apical auxin and basal ABA treatments were combined in Ipomoea. CONCLUSION: The finding that basally applied ABA is able partially to restore apical dominance via acropetal transport up the shoot suggests possible interactions between ABA, auxin and the unidentified carotenoid-derived branching inhibitor that justify further investigation.  相似文献   

16.
Enzymes that are able to oxidatively cleave carotenoids at specific positions have been identified in animals and plants. The first such enzyme to be identified was a nine-cis-epoxy carotenoid dioxygenase from maize, which catalyzes the rate-limiting step of abscisic acid biosynthesis. Similar enzymes are necessary for the synthesis of vitamin A in animals and other carotenoid-derived molecules in plants. In the model plant, Arabidopsis, there are nine hypothetical proteins that share some degree of sequence similarity to the nine-cis-epoxy carotenoid dioxygenases. Five of these proteins appear to be involved in abscisic acid biosynthesis. The remaining four proteins are expected to catalyze other carotenoid cleavage reactions and have been named carotenoid cleavage dioxygenases (CCDs). The hypothetical proteins, AtCCD7 and AtCCD8, are the most disparate members of this protein family in Arabidopsis. The max3 and max4 mutants in Arabidopsis result from lesions in AtCCD7 and AtCCD8. Both mutants display a dramatic increase in lateral branching and are believed to be impaired in the synthesis of an unidentified compound that inhibits axillary meristem development. To determine the biochemical function of AtCCD7, the protein was expressed in carotenoid-accumulating strains of Escherichia coli. The activity of AtCCD7 was also tested in vitro with several of the most common plant carotenoids. It was shown that the recombinant AtCCD7 protein catalyzes a specific 9-10 cleavage of beta-carotene to produce the 10 black triangle down-apo-beta-carotenal (C27) and beta-ionone (C13). When AtCCD7 and AtCCD8 were co-expressed in a beta-carotene-producing strain of E. coli, the 13-apo-beta-carotenone (C18) was produced. The C18 product appears to result from a secondary cleavage of the AtCCD7-derived C27 product. The sequential cleavages of beta-carotene by AtCCD7 and AtCCD8 are likely the initial steps in the synthesis of a carotenoid-derived signaling molecule that is necessary for the regulation lateral branching.  相似文献   

17.
Roots of maize (Zea mays L.) seedlings continue to grow at low water potentials that cause complete inhibition of shoot growth. In this study, we have investigated the role of abscisic acid (ABA) in this differential growth sensitivity by manipulating endogenous ABA levels as an alternative to external applications of the hormone. An inhibitor of carotenoid biosynthesis (fluridone) and a mutant deficient in carotenoid biosynthesis (vp 5) were used to reduce the endogenous ABA content in the growing zones of the primary root and shoot at low water potentials. Experiments were performed on 30 to 60 hour old seedlings that were transplanted into vermiculite which had been preadjusted to water potentials of approximately −1.6 megapascals (roots) or −0.3 megapascals (shoots). Growth occurred in the dark at near-saturation humidity. Results of experiments using the inhibitor and mutant approaches were very similar. Reduced ABA content by either method was associated with inhibition of root elongation and promotion of shoot elongation at low water potentials, compared to untreated and wild-type seedlings at the same water potential. Elongation rates and ABA contents at high water potential were little affected. The inhibition of shoot elongation at low water potential was completely prevented in fluridone-treated seedlings during the first five hours after transplanting. The results indicate that ABA accumulation plays direct roles in both the maintenance of primary root elongation and the inhibition of shoot elongation at low water potentials.  相似文献   

18.
Nelson T 《Current biology : CB》2004,14(21):R929-R930
New studies combining genetic and grafting approaches in Arabidopsis provide evidence that a carotenoid derivative is a novel plant signaling molecule through which roots can influence shoot branching and leaf development.  相似文献   

19.
Strigolactones (SLs) have been proposed as a new group of plant hormones, inhibiting shoot branching, and as signaling molecules for plant interactions. Here, we present evidence for effects of SLs on root development. The analysis of mutants flawed in SLs synthesis or signaling suggested that the absence of SLs enhances lateral root formation. In accordance, roots grown in the presence of GR24, a synthetic bioactive SL, showed reduced number of lateral roots in WT and in max3-11 and max4-1 mutants, deficient in SL synthesis. The GR24-induced reduction in lateral roots was not apparent in the SL signaling mutant max2-1. Moreover, GR24 led to increased root-hair length in WT and in max3-11 and max4-1 mutants, but not in max2-1. SLs effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.  相似文献   

20.
Maize seeds were germinated in the dark in the presence of the carotenoid synthesis inhibitor norflurazon and the teveis of abscisic acid, xanthoxin and total carotenoids were measured in the root cap and in the adjacent 1.5 mm segment. In norflurazon-treated roots abscisic acid levels were markedly reduced, but an increase occurred in the levels of xanthoxin, a compound structurally and physiologically similar to abscisic acid. In the cultivar of maize ( Zea mays L. cv. Merit) used for this work, brief illumination of the root is required for gravitropic curving. Following illumination both control and norflurazon-treated roots showed normal gravitropic curvature, however, the rate of curvature was delayed in norflurazon-treated roots. Our data from norflurazon-treated roots are consistent with a role for xanthoxin in maize root gravitropism. The increase in xanthoxin in the presence of an inhibitor of carotenoid synthesis suggests that xanthoxin and abscisic acid originate, at least in part, via different metabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号