首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lenk P  Fritz U  Joger U  Wink M 《Molecular ecology》1999,8(11):1911-1922
The phylogeny and phylogeography of Emys orbicularis was inferred from mitochondrial nucleotide sequences of the cytochrome b gene analysed by DNA sequencing and RNA heteroduplex analysis. Within the family Emydidae the monotypic genus Emys is affiliated with the nearctic taxa Emydoidea blandingii and Clemmys marmorata. The analysis of 423 individuals of E. orbicularis, originating throughout its distribution range, revealed a remarkable intraspecific differentiation in 20 different haplotypes with distinct geographical ranges. Maximum parsimony analysis produced a star-like phylogeny with seven main lineages which may reflect separations in the late Pliocene. The haplotype distribution examined by partial Mantel tests and analysis of molecular variance revealed a substantial effect of glacial periods. This historical perspective suggests the existence of multiple glacial refugia and considerable Holocene range expansion which was modulated by climatic traits. Further support is gained for the occurrence of long-term parapatry in glacial refugia.  相似文献   

2.
The Conservative morphology of hardshelled turtles has fostered the use of size relationships between epidermal scutes (scales) on the shell to differentiate between species and subspecies of many taxa. The size relationship of the six major pairs of plastral scutes were used to compare the four currently recognized species of the genus Clemmys with each other. as well as with the distantly related Graptemys barbouri using Jaccard Coefficients. Shannon-Weiner diversity indices, and multivariate analysis. Results were concordant among the three techniques used and confirm our prediction that plastral morphology varies little among closely related species and widely among distantly related taxa. Clemmys muhlenbergii appears to he more different from Clemmys guttata than previously suggested. Analysis of plastral morphology shows promise as a taxonomic tool for turtle systematists.  相似文献   

3.
Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones—one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form.  相似文献   

4.
Miniaturization, or the evolution of a dramatically reduced body size compared to related lineages, is an extraordinarily widespread phenomenon among metazoans. Evolutionary biologists have been fascinated by miniaturization because this transition has occurred numerous times, often among close relatives, providing a model system for studying convergent evolution and its underlying mechanisms. Much of the developmental work describing the ontogeny of miniature species suggests that paedomorphosis is the predominant avenue of miniaturization. Nevertheless, specific alterations to ontogeny appear highly variable, so that even related lineages with similar miniaturized traits produce those similarities via distinct ontogenetic paths. One major vertebrate group that has been overlooked in research on miniaturization is turtles. In the present study, we examined patterns of shape change in the plastron (the ventral part of the shell) over the course of ontogeny in a small clade of turtles (Emydinae) aiming to investigate whether two independently evolved diminutive members of the clade (Glyptemys muhlenbergii and Clemmys guttata) should be considered as miniaturized. We employ geometric morphometric methods to quantify the patterns of shape change these potentially miniaturized species and their relatives undergo during ontogeny, and use molecular phylogenetic trees to reconstruct ancestral conditions and provide information on the polarity of shape changes. We find that differing changes in ontogenetic parameters relative to ancestral conditions accompany the evolution of small size in emydines: G. muhlenbergii changes the duration of ontogeny and rate of shape change, whereas C. guttata changes growth rate. The observed ontogenetic repatterning of these species is reminiscent of changes in ontogeny and life history often found in miniaturized taxa. However, we conclude that C. guttata and G. muhlenbergii are not truly miniaturized because they still produce typical adult shell morphologies, and larger emydines display comparable ontogenetic flexibility. Because no emydines carry juvenile shell features forward into adulthood, we speculate that few, if any turtles, will show paedomorphic shell traits without corresponding changes in defensive strategy because such shells may offer insufficient protection. © 2013 The Linnean Society of London  相似文献   

5.
A key trend in the 210‐million‐year‐old history of modern turtles was the evolution of shell kinesis, that is, shell movement during neck and limb retraction. Kinesis is hypothesized to enhance predator defense in small terrestrial and semiaquatic turtles and has evolved multiple times since the early Cretaceous. This complex phenotype is nonfunctional and far from fully differentiated following embryogenesis. Instead, kinesis develops slowly in juveniles, providing a unique opportunity to illustrate the postembryonic origins of an adaptive trait. To this end, we examined ventral shell (plastral) kinesis in emydine box turtles and found that hatchling plastron shape differs from that of akinetic‐shelled relatives, particularly where the hinge that enables kinesis differentiates. We also demonstrated shape changes relative to plastron size in juveniles, coinciding with a shift in the carapace‐plastron structural connection, rearrangement of ectodermal plates, and bone repatterning. Furthermore, because the shell grows larger relative to the head, complete concealment of the head and extremities is only achieved after relative shell proportions increase. Structural alterations that facilitate the box turtle's transformation are probably prepatterned in embryos but require function‐induced changes to differentiate in juveniles. This mode of delayed trait differentiation is essential to phenotypic diversification in turtles and perhaps other tetrapods.  相似文献   

6.
Two species of turtle collected in southern New England were inoculated subcutaneously with eastern equine encephalitis virus. The spotted turtles (Clemmys guttata) developed viremia and neutralizing antibody after exposure to 3 logs or more of virus. Viremia was not detected in the eastern painted turtles (Chrysemys picta), and neutralizing antibody was detected in only 1 of 15 inoculated C. picta; however, since pre-inoculation serum was not obtained from this animal, the possibility of natural infection cannot be eliminated.  相似文献   

7.
Overwintering habits of hatchling Blanding's turtles (Emydoidea blandingii) are unknown. To determine whether these turtles are able to survive winter in aquatic habitats, we submerged hatchlings in normoxic (155 mmHg Po2) and hypoxic (6 mmHg Po2) water at 4 degrees C, recording survival times and measuring changes in key physiological variables. For comparison, we simultaneously studied hatchling softshell (Apalone spinifera) and snapping (Chelydra serpentina) turtles, which are known to overwinter in aquatic habitats. In normoxic water, C. serpentina and A. spinifera survived to the termination of the experiment (76 and 77 d, respectively). Approximately one-third of the E. blandingii died during 75 d of normoxic submergence, but the cause of mortality was unclear. In hypoxic water, average survival times were 6 d for A. spinifera, 13 d for E. blandingii, and 19 d for C. serpentina. Mortality during hypoxic submergence was probably caused by metabolic acidosis, which resulted from accumulated lactate. Unlike the case with adult turtles, our hatchlings did not increase plasma calcium and magnesium, nor did they sequester lactate within the shell. Our results suggest that hatchling E. blandingii are not particularly well suited to hibernation in hypoxic aquatic habitats.  相似文献   

8.
9.
Chromosome homology and evolution of emydid turtles   总被引:4,自引:0,他引:4  
G-, C-, Q-banding and standard karyotypic analyses were used to study the chromosomal relationships of emydid turtles. Ten species of emydids were used (5 batagurines and 5 emydines) which samples all of the karyotypic variation known for the Emydidae. Data from a testudinid and a chelydrid are compared to the emydids. The karyotype of Mauremys and Sacalia is considered representative of the primitive karyotype for this group because of its widespread occurrence in the morphologically primitive Batagurinae and its similarity to that of some testudinids. The emydine karyotype is believed to have evolved from the primitive batagurine karyotype by the deletion of a heterochromatic macrochromosome. Siebenrockiella and Rhinoclemys are karyotypically derived batagurines.  相似文献   

10.
A set of eight highly polymorphic microsatellite markers was isolated and characterized from a genomic library enriched for dinucleotide repeats in the European pond turtle, Emys orbicularis. The markers were tested for polymorphism in a total of 33 turtles sampled in two natural ponds in the nature reserve of Kerkini, northern Greece. Number of alleles varied from 10 to 18, and expected heterozygosity ranged between 0.738 and 0.921. This novel set of loci will be particularly useful to assess fine-scale population structure and for parentage analysis in E. orbicularis.  相似文献   

11.
Three turtles, Clemmys insculpta, were kept together in a terrarium in a climatic chamber at 18 degrees C, with lights on at 07:00 h and off at 19:00 h. In one corner of the terrarium an infrared lamp produced an operative temperature of 42.5 degrees C, thereby allowing behavioral temperature regulation during the light period. When the turtles were handled only once a day for the purpose of taking cloacal temperature, their body temperature held stable at about 22-23 degrees C. Immediately after being handled the turtles sought the radiant heat and regulated their body temperature at about 4 degrees C higher than before the handling. When repeatedly handled every 15 min for 2 h the turtles maintained a high body temperature by their behavior. When not repeatedly handled the turtles returned to their initial preferred body temperature ca 22-23 degrees C within 2 h. It is hypothesized that handling causes in turtles a fever similar to that observed in stressed mammals. The turtles were equipped with an electrocardiogram radio transmitter and their heart rate was recorded at a distance. Heart rate in undisturbed turtles was 28.3+/-0.6 bt/min. During a 1-min handling, their heart rate rose to 40.2+/-0.8 bt/min. This tachycardia persisted several minutes, then their heart rate returned to the baseline value in ca. 10 min. Stress fever and tachycardia are taken as signs of emotion in turtles.  相似文献   

12.
13.
J. W. Bickham 《Genetica》1976,46(2):193-198
The meiotic chromosomes of 4 species of turtles representing 3 genera (Clemmys, Mauremys and Geochelone) are described and compared. Clemmys differs from Mauremys and Geochelone in possessing one fewer bivalent in diakinesis and one fewer chromosome in prophase II. Mauremys differs from Clemmys and Geochelone in possessing a distinct heterochromatic knob on one small bivalent in late pachytene. The presence of this heterochromatic region in the batagurine turtle may be the ancestral condition and its loss may now characterize the emydines such as Clemmys and the testudinids such as Geochelone.  相似文献   

14.
Turtles are a small taxon that has nevertheless attracted much attention from biologists for centuries. However, a major portion of their life cycle has received relatively little attention until recently - namely what turtles are doing, and how they are doing it, during the winter. In the northern parts of their ranges in North America, turtles may spend more than half of their lives in an overwintering state. In this review, I emphasise the ecological aspects of overwintering among turtles, and consider how overwintering stresses affect the physiology, behaviour, distributions, and life histories of various species.Sea turtles are the only group of turtles that migrate extensively, and can therefore avoid northern winters. Nevertheless, each year a number of turtles, largely juveniles, are killed when trapped by cold fronts before they move to safer waters. Evidently this risk is an acceptable trade-off for the benefits to a population of inhabiting northern developmental habitats during the summer.Terrestrial turtles pass the winter underground, either in burrows that they excavate or that are preformed. These refugia must provide protection against desiccation and lethal freezing levels. Some burrows are extensive (tortoise genus Gopherus), while others are shallow, or the turtles may simply dig into the ground to a safe depth (turtle genus Terrapene). In the latter genus, freeze tolerance may play an adaptive role.Most non-marine aquatic turtles overwinter underwater, although Clemmys (Actinemys) marmorata routinely overwinters on land when it occurs in riverine habitats, Kinosternon subrubrum often overwinters on land, and several others may overwinter terrestrially on occasion, especially in more southern climates. For northern species that overwinter underwater, there are two physiological groupings, those that are anoxia-tolerant and those that are relatively anoxia-intolerant. All species fare well physiologically in water with a high partial pressure of oxygen (PO2). A lack of anoxia tolerance limits the types of habitats that a freshwater turtle may live in, since unlike sea turtles, they cannot travel long distances to hibernate.Hatchlings of some species of turtles spend their first winter in or below the nest cavity, while hatchlings of other species in the same area, including northern areas, emerge in the autumn and presumably hibernate underwater. All hatchlings are relatively anoxia-intolerant, and there are no studies to date of where hatchling turtles that do not overwinter in or below the nest cavity spend their first winter. Equally little is known of the ontogeny of anoxia tolerance, other than that adults of all species are more anoxia-tolerant than their hatchlings, probably because of their better ossified shells, which provide adults with more buffer reserves and a larger site in which to sequester lactate. The northern limits of turtles are most likely determined by reproductive limitations (time for egg-laying, incubation, and hatching) than by the rigors of hibernation.Mortality is typically lower in turtle populations during hibernation than it is during their active periods. However, episodic mortality events do occur during hibernation, due to freezing, prolonged anoxia, or predation.  相似文献   

15.
The European pond turtle, Emys orbicularis, inhabits a wide distribution area in the western Palaearctic. Polish populations of pond turtle represent the nominotypical subspecies Emys orbicularis orbicularis. The mitochondrial DNA haplotype (cytb gene) variation among 131 turtles from 26 locations in five regions of Poland was investigated. Five haplotypes belonging to three distinct lineages were identified. Two clades (I and II) were represented by two haplotypes each, while the other clade (IV) was represented by one haplotype. Three haplotypes were reported for the first time in E. orbicularis. The eastern part of Poland is inhabited exclusively by turtles bearing haplotype Ia. The remaining four sequence variants were recorded in western Poland where only the IIb haplotype is considered endemic. The distribution of the other haplotypes in western Poland could thus reflect past introductions or accidental releases. The authors regarded the two locations (Drzeczkowo and Karpicko) that were first included in the western Poland populations as autochthonous catchment areas of haplotype Ia.  相似文献   

16.
Parasitological examination of feces from 44 Emys orbicularis from Galicia (NW Spain) revealed the presence of 2 new eimerian species, Eimeria gallaeciaensis sp. n. and E. emydis sp. n., as well as E. mitraria (Laveran and Mesnil, 1902) Doflein, 1909. Oocysts of E. gallaeciaensis n. sp. were found in 20 of 44 (45.4%) turtles and are subspherical to lightly ovoid-ellipsoid, 19.3 x 16.0 (17-22 x 15-18) microm, shape index 1.2 (1.1-1.3), with a smooth, single-layered wall. Micropyle and polar granule are absent, but an oocyst residuum is present. Sporocysts are ellipsoid, 9.7 x 5.1 (9-10 x 5-6) microm, shape index 1.9 (1.7-2.0), each with a sporocyst residuum and a conical Stieda body usually bearing 1-4 short and thin projections. Oocysts of E. emydis n. sp. were found in the feces of 5 of 44 (11.4%) turtles and are ovoid, rarely pear-shaped, 22.6 x 17.0 (20-25 x 15.5-18) microm, shape index 1.3 (1.2-1.5), with a smooth, single-layered wall with a slight thinning at the pointed end. Micropyle and polar granule are absent, and an oocyst residuum is present. Sporocysts are ellipsoid, 11.4 x 6.0 (9-13 x 5-7) microm, shape index 1.9 (1.6-2.2), each with sporocyst residuum and a prominent Stieda body bearing 3-5 club-shaped projections. In addition to the new species described, this is the first report of E. mitraria parasitizing E. orbicularis.  相似文献   

17.
As in many other turtles, the sexual differentiation of gonads in embryos of Emys orbicularis is temperature-sensitive, 100% phenotypic males being obtained below 27.5 degrees C and 100% phenotypic females above 29.5 degrees C. The expression of the serologically defined H-Y (SD-H-Y) antigen at both low and high temperatures has been shown to be different in gonads and in blood : in gonads, it is closely associated with ovarian structure, whereas in blood it is independent of sexual phenotype and appears to indicate sexual genotype. Both sexes differentiate at 28.5 degrees C, suggesting that at this intermediate (threshold) temperature, sexual differentiation of gonads conforms with sexual genotype. To test this hypothesis, the expression of SD-H-Y antigen has been carried out in blood cells of Emys individuals raised from eggs incubated at the threshold temperature (28.5 degrees C). All phenotypic males typed SD-H-Y negative, whereas most phenotypic females typed SD-H-Y positive. From this concordance between sexual phenotype of gonads and SD-H-Y phenotype of blood, we postulate that a ZZ male/ZW female mechanism of genotypic sex determination is revealed at the threshold temperature for gonad differentiation in Emys.  相似文献   

18.
19.
Geographic variation in the mtDNA haplotypes (cytochrome b gene) of 127 European pond turtles from Italy was investigated. Thirty‐eight of the Italian samples were also studied by nuclear fingerprinting (ISSR PCR) and compared with samples from other parts of the range representing all nine currently known mtDNA lineages of Emys orbicularis. Our genetic findings were compared against morphological data sets (measurements, colour pattern) for 109 adult turtles from southern Italy. Italy is displaying on a small geographical scale the most complicated variation known over the entire distributional area of Emys (North Africa over Europe and Asia Minor to the Caspian and Aral Seas). The Tyrrhenic coast of the Apennine Peninsula, the Mt. Pollino area and Basilicata are inhabited by Emys orbicularis galloitalica, a subspecies harbouring a distinct mtDNA lineage. The same lineage is also found in Sardinia. Along the Adriatic coast of Italy and on the Salentine Peninsula (Apulia, southern Italy), another morphologically distinctive subspecies (Emys orbicularis hellenica) occurs, which also bears a different mtDNA lineage. A higher diversity of mtDNA haplotypes in the south of the Apennine Peninsula suggests that the glacial refugia of E. o. galloitalica and E. o. hellenica were located here. A further refuge of E. o. hellenica probably existed in the southern Balkans. The west coasts of the Balkans and Corfu have probably been colonized from Italy and not from the geographically closer southern Balkanic refuge. In Sicily, a third mtDNA lineage is distributed, which is sister to all other known lineages of Emys. Morphologically, Sicilian pond turtles resemble E. o. galloitalica. However, nuclear fingerprinting revealed a clear distinctiveness of the Sicilian taxon, whereas no significant divergence was detected between representatives of the other eight mtDNA lineages of Emys. Furthermore, nuclear fingerprinting provided no evidence for current or past gene flow between the Sicilian taxon and the mainland subspecies of E. orbicularis. Therefore, Sicilian pond turtles are described here as a species new to science. Some populations in Calabria and on the Salentine Peninsula comprise individuals of different mtDNA lineages. We interpret this as a natural contact. However, we cannot exclude that these syntopic occurrences are the result of human activity. For example, in other parts of Italy, the natural distribution pattern of Emys is obscured by allochthonous turtles. This could also be true for southern Italy. The discovery of the complex taxonomic differentiation in southern Italy requires reconsidering conservation strategies.  相似文献   

20.
Historical (phylogenetic) biogeography and community ecology were once integrated as part of the broader study of organismal diversity, but in recent decades have become largely separate disciplines. This is unfortunate because many patterns studied by community ecologists may originate through processes studied by historical biogeographers and vice versa. In this study, we explore the causes of a geographic pattern of community structure (habitat use) in the emydid turtle assemblages of eastern North America, with more semi-terrestrial species of the subfamily Emydinae in the north and more aquatic species of Deirochelyinae in the south. Specifically, we address the factors that prevent northern emydines from invading southern communities. We test for competitive exclusion by examining patterns of range overlap, and test for the role of niche conservatism using analyses of climatic and physiological data based on a multilocus molecular phylogeny. We find no support for competitive exclusion, whereas several lines of evidence support the idea that niche conservatism has prevented northern emydines from dispersing into southern communities. Our results show how understanding the causes of patterns of historical biogeography may help explain patterns of community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号