首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential neuronal loss following early postnatal alcohol exposure   总被引:5,自引:0,他引:5  
Neonatal rats were exposed to 6.6 g/kg of alcohol each day between postnatal days 4 and 10 while artificial-rearing procedures were used, in a manner which produced high peak and low trough blood alcohol concentrations each day. Gastrostomy controls were reared artificially with maltose/dextrin isocalorically substituted for alcohol in the milk formula, and suckle controls were reared normally by dams. The pups were sacrificed on day 10 and tissue sections (2 microns thick) were obtained in the sagittal plane through the cerebellum and in the horizontal plane through the hippocampal formation. Overall area measures were obtained for the hippocampus proper, area dentata, and cerebellum, along with areas of the cell layers of these regions. In the hippocampal formation, cell counts were made of the pyramidal cells of the hippocampus proper, the multiple cell types of the hilus, and the granule cells of the area dentata. In the cerebellum, cell counts of Purkinje cells, granule cells of the granular layer, granule cells of the external granular layer, and mitotic cells of the external granular layer were obtained from lobules I, V, VII, VIII, and IX. Alcohol selectively reduced areas and neuronal numbers in the cerebellum but had no significant effects on neuronal numbers in the hippocampal formation. Purkinje cells exhibited the greatest percent reductions, and cerebellar granule cells were significantly reduced in the granular layer but not in the external granular layer. All lobules showed these effects, but lobule I was significantly more affected than the other four lobules that were analyzed. The results demonstrate the differential vulnerability of selected neuronal populations to the developmental toxicity of alcohol exposure during the brain growth spurt.  相似文献   

2.
D J Bonthius  J R West 《Teratology》1988,37(3):223-231
The relationships among microencephaly, peak blood alcohol concentration (BAC), and dose of alcohol were examined in a rat model of third-trimester fetal alcohol effects. Ethyl alcohol was administered to neonatal rats from postnatal day 4 to day 10 during the brain growth spurt via an artificial rearing technique. Groups of rats received one of nine doses of alcohol (0.0, 2.5, 3.3, 4.0, 4.5, 5.3, 6.6, 7.5, or 8.5 g/kg body weight) administered in 8 hours each day. BACs were determined on postnatal days 6 and 7 at times corresponding to peak and trough BACs, respectively. On postnatal day 10, brains were removed, and total brain weights, cerebellar weights and brainstem weights were measured. Pups receiving 4.0 g/kg/day or less had mean peak BACs below 150 mg/dl and did not exhibit significant microencephaly when compared with controls. Higher dosages further increased the peak BAC and produced significant microencephaly. While a dose of 4.5 g/kg/day was sufficient to decrease significantly both total brain weight and cerebellar weight, a minimum dose of 6.6 g/kg/day was required for significant restriction of brainstem weight. The dose of 7.5 g/kg/day yielded a mean peak BAC of 420 mg/dl and reduced total brain weight, cerebellar weight, and brainstem weight by 33%, 52%, and 22%, respectively, relative to controls. Exposure to 8.5 g/kg/day was uniformly lethal. Peak BAC and total brain weight were highly correlated (r = -.916). As peak BAC increased, total brain weight decreased linearly. Comparisons with previous studies indicate that condensing the daily dose of alcohol effectively reduced the threshold doses for microencephaly and lethality.  相似文献   

3.
The brain is a key target of ethanol teratogenicity, in which ethanol can produce neurodegeneration in selected areas, including the hippocampus and cerebellum. The research objective was to test the hypothesis that chronic prenatal ethanol exposure, via maternal ethanol administration, produces differential time course of decreased linear density of hippocampal CA1 pyramidal cells and cerebellar Purkinje cells. Timed pregnant guinea pigs received chronic oral administration of ethanol, isocaloric-sucrose/pair-feeding, or water throughout gestation (term, about gestational day (GD) 68), and the offspring were studied at GD 62 (near-term fetus), postnatal day (PD) 1 (neonate), PD 5, and PD 12 (early postnatal life). Ethanol treatment, compared with isocaloric-sucrose/pair-feeding and water treatments, decreased brain, hippocampal, and cerebellar weights at GD 62, PD 1, PD 5, and PD 12. Hippocampal CA1 pyramidal cell linear density and cerebellar Purkinje cell linear density were unaffected at GD 62. Ethanol treatment produced 25, 30, and 30% decreases in linear density of hippocampal CA1 pyramidal cells at PD 1, PD 5, and PD 12, respectively, and a 30% decrease in linear density of cerebellar Purkinje cells at PD 12 only. At PD 5, Purkinje cell profile linear density remained unaffected; however, ethanol treatment appeared to increase linear density of apoptotic Purkinje cell nuclei, as determined by a modified TUNEL method. The data demonstrate that chronic prenatal ethanol exposure produces apparent differential time course of decreased linear density of hippocampal CA1 pyramidal cells and cerebellar Purkinje cells in the developing guinea pig.  相似文献   

4.
Thyroid hormones play an important role in brain development, but the mechanism(s) by which triiodothyronine (T3) mediates neuronal differentiation is poorly understood. Here we demonstrate that T3 regulates the neurotrophic factor, neurotrophin-3 (NT-3), in developing rat cerebellar granule cells both in cell culture and in vivo. In situ hybridization experiments showed that developing Purkinje cells do not express NT-3 mRNA but do express trkC, the putative neuronal receptor for NT-3. Addition of recombinant NT-3 to cerebellar cultures from embryonic rat brain induces hypertrophy and neurite sprouting of Purkinje cells, and upregulates the mRNA encoding the calcium-binding protein, calbindin-28 kD. The present study demonstrates a novel interaction between cerebellar granule neurons and developing Purkinje cells in which NT-3 induced by T3 in the granule cells promotes Purkinje cell differentiation.  相似文献   

5.
6.
Ethanol is known as a potent teratogen having adverse effects on brain and behavior. However, some of the behavioral deficits caused by fetal alcohol exposure and well expressed in juveniles ameliorate with maturation may suggest some kind of functional recovery occurring during postnatal development. The aim of this study was to reexamine age‐dependent behavioral impairments in fetal‐alcohol rats and to investigate the changes in neurogenesis and gross morphology of the hippocampus during a protracted postnatal period searching for developmental deficits and/or delays that would correlate with behavioral impairments in juveniles and for potential compensatory processes responsible for their amelioration in adults. Ethanol was delivered to the pregnant dams by intragastric intubation throughout 7–21 gestation days at daily dose of 6 g/kg. Isocaloric intubation and intact control groups were included. Locomotor activity, anxiety, and spatial learning tasks were applied to juvenile and young‐adult rats from all groups. Unbiased stereological estimates of hippocampal volumes, the total number of pyramidal and granular cells, and double cortin expressing neurons were carried out for postnatal days (PDs) PD1, PD10, PD30, and PD60. Alcohol insult during second trimester equivalent caused significant deficits in the spatial learning in juvenile rats; however, its effect on hippocampal morphology was limited to a marginally lower number of granular cells in dentate gyrus (DG) on PD30. Thus, initial behavioral deficits and the following functional recovery in fetal‐alcohol subjects may be due to more subtle plastic changes within the hippocampal formation but also in other structures of the extended hippocampal circuit. Further investigation is required. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 498–513, 2014  相似文献   

7.
Chen WJ  King KA  Lee RE  Sedtal CS  Smith AM 《Life sciences》2006,79(23):2221-2227
Smoking during pregnancy poses a potential risk to unborn children. The present study examined the long-term effects of early nicotine exposure on the number of pyramidal and granule cells in the hippocampus, and Purkinje cells in the cerebellar vermis. The loss of neurons is the most severe form of brain injury with significant functional implications. In this study, rats were exposed to nicotine during either the prenatal (PRE) period or both the prenatal and early postnatal (PERI) period. It was hypothesized that nicotine treatment would result in long-term decreases in neuronal numbers, and that PERI treatment would be more detrimental to these cell populations than the PRE treatment. The results showed that neither PRE nor PERI nicotine exposure reduces the numbers of pyramidal, granule or Purkinje cells. Neither the regions where these cells reside, nor the cell densities were affected by nicotine. Although no significant cell loss was observed, the current nicotine exposure regimens may lead to alterations in cellular functions or cytoarchitectures. The present results in conjunction with previous reports showing significant cell loss from nicotine exposure during the brain growth spurt suggest that "patch-like" nicotine exposure during prenatal period may alter the sensitivity or the responsiveness of the developing brain to the injurious effects of nicotine during the most vulnerable stage of brain development - the brain growth spurt. Furthermore, the current stereology cell counting results are not in agreement with some reports in the literature, and this discrepancy may simply be a function of different cell counting techniques used.  相似文献   

8.
Neural visinin-like proteins (VILIPs) are members of the neuronal subfamily of intracellular EF-hand calcium sensor proteins termed the NCS family, which are thought to play important roles in cellular signal transduction. While numerous studies suggest a wide but uneven distribution of these proteins in rat and chicken brain, their location in, and possible significance for, the human brain, remains to be established. We used specific polyclonal antisera to map the human brain for VILIP-1 and VILIP-3 immunoreactivities. VILIP-1 was detected in cortical pyramidal cells and interneurons, septal, subthalamic and hippocampal neurons (subfields CA1 and CA4 pyramidal cells and especially hilar interneurons) as well as in cerebellar Golgi, basket, granule, stellate and dentate nucleus neurons. Purkinje cells were free of immunoreaction. VILIP-3 was more restricted in its distribution. It was identified in cerebellar Purkinje cells and a subpopulation of granule neurons. Further, neurons belonging to different nuclei of the brain stem and multiple subcortical nerve cells stained for visinin-like protein 3. A weak immunoreaction appeared in cortical and hippocampal neurons. Intracellularly the immunoreactivity appeared in the perikarya, dendrites and some axons. Sometimes, immunostaining was found in the neuropil. Glia did not express visinin-like proteins. Our findings support, from a neuroanatomical viewpoint, the idea that these calcium sensor proteins may be of relevance for neuronal signalling in the human CNS.  相似文献   

9.
Wistar rats 1- to 90-day-old received an injection of 3H-uridine and were killed 20 min to 44 h later. Autoradiographic examination revealed the highest grain count densities in Purkinje cell nuclei around postnatal day (PD) 6 while the incidence of labelled nuclei stayed at the peak values till PD 15. Silver staining of Purkinje cell nuclei showed that the expression of nucleolar r-RNA coding genes is maximal at PD 15; in some cells it even slightly exceeds adult values. After PD 15, the percentage of labelled Purkinje cell nuclei declined; this was more pronounced in the nucleolar region than outside the nucleolus. The percentage of cells with cytoplasmic labelling culminated on PD 15. The highest grain counts were found in Purkinje cell cytoplasm on PD 6 at 44 h p.i. interval. Reversal in nuclear grain counts at 2 and 6 h p.i. intervals observed between PD 15 and PD 25 suggests faster degradation, or processing and export, of a newly synthesized nuclear RNA in these age groups. Frequency distribution analysis of grain count densities revealed a small group of Purkinje cells with higher incorporation of 3H-uridine both in the nucleolar region and the whole nucleus at PD 15. In situ hybridization of 3H-r-RNA revealed a slight binding excess to DNA of some Purkinje cell nuclei but not in granule cells of 1-month-old rats. These data, together with those published recently by Brodsky et al. (1985), indicate an uneven structural organization and partial overexpression of the genom coding r-RNA synthesis in the population of Purkinje cells.  相似文献   

10.
Reelin is an extracellular matrix molecule that is involved in the normal development of the cerebellar lamination, Bergmann glial fibres alignment, Purkinje cell monolayer arrangement and granule cell migration. In this study, we have examined the effects of maternal exposure of deltamethrin (DLT), a type II pyrethroid insecticide, on the structural and functional development of rat cerebellum during postnatal life. DLT (0.75 mg/kg body weight, intraperitoneally dissolved in dimethylsulphoxide) was administered in timed pregnant rats during two different gestational time periods, i.e. gestational days of 7–10 and 11–14, respectively. In DLT exposed rats, a significant overexpression of reelin was observed in the cells of the external granule cell layer (EGL) and internal granule cell layer along with an ectopic expression of reelin in the EGL as well as in the migrating granule cells just below the EGL, revealing an arrest of granule cell migration in this zone. Mis-orientation and hypertrophy of the Bergmann glial fibres further hampered the journey of the granule cells to their final destination. Possibly reelin overexpression also caused misalignment of the Purkinje cells and inhibited the neurite growth leading to a significant decrease in the spine density, main dendritic length and width of the dendritic arbour. Thus, it is proposed that the DLT exerts its neurotoxic effects possibly via the intracellular accumulation and low release of reelin leading to an impaired granule cell and Purkinje cell migration, inhibition of neurite outgrowth and reduced spine density. Such impaired cerebellar development leads to motor coordination deficits.  相似文献   

11.
12.
During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.  相似文献   

13.
Among all K2P channels, TASK-3 shows the most widespread expression in rat brain, regulating neuronal excitability and transmitter release. Using a recently purified and characterized polyclonal monospecific antibody against TASK-3, the entire rat brain was immunocytochemically analyzed for expression of TASK-3 protein. Besides its well-known strong expression in motoneurons and monoaminergic and cholinergic neurons, TASK-3 expression was found in most neurons throughout the brain. However, it was not detected in certain neuronal populations, and neuropil staining was restricted to few areas. Also, it was absent in adult glial cells. In hypothalamic areas, TASK-3 was particularly strongly expressed in the supraoptic and suprachiasmatic nuclei, whereas other hypothalamic nuclei showed lower protein levels. Immunostaining of hippocampal CA1 and CA3 pyramidal neurons showed strongest expression, together with clear staining of CA3 mossy fibers and marked staining also in the dentate gyrus granule cells. In neocortical areas, most neurons expressed TASK-3 with a somatodendritic localization, most obvious in layer V pyramidal neurons. In the cerebellum, TASK-3 protein was found mainly in neurons and neuropil of the granular cell layer, whereas Purkinje cells were only faintly positive. Particularly weak expression was demonstrated in the forebrain. This report provides a comprehensive overview of TASK-3 protein expression in the rat brain.  相似文献   

14.
Monk BR  Leslie FM  Thomas JD 《Hippocampus》2012,22(8):1750-1757
Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M(1) and M(2/4) muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human third trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30 through 33, and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first 2 days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M(1) receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M(2/4) receptor density, an effect mitigated by choline supplementation. In fact, M(2/4) receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that perinatal choline supplementation may attenuate alcohol-related behavioral changes by influencing cholinergic systems.  相似文献   

15.
16.
The distribution of inositol 1,4,5-trisphosphate (InsP3) 3-kinase mRNA in the rat brain is reported using oligonucleotides based on a cDNA clone sequence that encodes rat brain InsP3 3-kinase and the in situ hybridization technique. Moderate levels were found in CA2-4 pyramidal neurons, in the cortex, and in the striatum. The cerebellar granule cells, thalamus, hypothalamus, brainstem, spinal cord, and white matter tracts were almost negative. The levels of InsP3 3-kinase mRNA were highest in the hippocampal CA1 pyramidal neurons, granule cells of the dentate gyrus, and cerebellar Purkinje cells. These results contrast with the lower concentration of the InsP3 receptor already reported in the hippocampus versus the Purkinje cells and suggest a special role for inositol 1,3,4,5-tetrakisphosphate in Ammon's horn.  相似文献   

17.
J Yanai  S Waknin 《Acta anatomica》1985,123(3):145-147
Previous studies from different laboratories have suggested that neonatal exposure to barbiturate and ethanol induces long-term changes in cerebellar morphology. The present study was designed to compare in similar conditions the effect of neonatal exposure to maximal doses of barbiturate or ethanol on cerebellar morphology. Phenobarbital was administered via daily injections of 50 mg/kg on neonatal days 2-21 (B group). Ethanol was similarly administered in doses of 3 g/kg (E3g) and the submaximal dose of 2 g/kg (E2g). At age 50 days, the cerebella of treated and control offspring were subjected to histological analysis. The sagittal areas of the cerebellar layers were similarly reduced compared to controls in both B and E3g groups. In addition, B and E3g groups exhibited a similar deficit in the number of the cerebellar Purkinje and granule neurons. As barbiturate and E3g, a submaximal dose of ethanol (B2g) induced a deficit in the number of cerebellar Purkinje cells. However, it did not affect the granule cells and the area of the cerebellar layers. The results suggest that under standardized conditions, barbiturate and ethanol have a similar potent neurotoxic effect on the cerebellum. That is, they both impair the development of the cerebellar layers to a similar extent and destroy neurons even after they have already formed.  相似文献   

18.
Some neurons, including cerebellar Purkinje cells, are completely ensheathed by astrocytes. When granule cell neurons and functional glia were eliminated from newborn mouse cerebellar cultures by initial exposure to a DNA synthesis inhibitor, Purkinje cells lacked glial sheaths and there was a tremendous sprouting of Purkinje cell recurrent axon collaterals, terminals of which hyperinnervated Purkinje cell somata, including persistent somatic spines, and formed heterotypical synapses with Purkinje cell dendritic spines, sites usually occupied by parallel fiber (granule cell axon) terminals. Purkinje cells in such preparations failed to develop complex spikes when recorded from intracellularly, and their membrane input resistances were low, making them less sensitive to inhibitory input. If granule cells and oligodendrocytes were eliminated, but astrocytes were not compromised, sprouting of recurrent axon collaterals occurred and their terminals projected to Purkinje cell dendritic spines, but the Purkinje cells had astrocytic sheaths, their somata were not hyperinnervated, the somatic spines had disappeared, complex spike discharges predominated, and membrane input resistance was like that of Purkinje cells in untreated control cultures. When cerebellar cultures without granule cells and glia were transplanted with granule cells and/or glia from another source, a series of changes occurred that included stripping of excess Purkinje cell axosomatic synapses by astrocytic processes, reduction of heterotypical axospinous synapses in the presence of astrocytes, disappearance of Purkinje cell somatic spines with astrocytic ensheathment, and proliferation of Purkinje cell dendritic spines after the introduction of astrocytes. Dendritic spine proliferation was followed by formation of homotypical axospinous synapses when granule cells were present or persistence as unattached spines in the absence of granule cells. The results of these studies indicate that astrocytes regulate the numbers of Purkinje cell axosomatic and axospinous synapses, induce Purkinje cell dendritic spine proliferation, and promote the structural and functional maturation of Purkinje cells.  相似文献   

19.
In the brain, classical (canonical) transient receptor potential (TRPC) channels are thought to be involved in different aspects of neuronal development. We investigated the developmental expression profile of TRPC channels in rat cerebellum during the first 6 weeks after birth. TRPC3 expression is significantly up-regulated whereas TRPC4 and TRPC6 expression are significantly down-regulated over this period of time. TRPC3 expression is mainly found on Purkinje cells and their dendrites, suggesting that the increase in TRPC3 expression reflects development of the dendritic tree of Purkinje cells. TRPC4 expression was restricted to granule and their precursor cells. TRPC6 expression is found on Purkinje cell bodies, on mature granule cells in the internal granule cell layer (but not their precursors) and interneurons in the molecular layer. The decrease in TRPC4 expression suggests that it is required for proper granule cell development whereas the decrease in TRPC6 expression is presumably correlated with interneuron development. Moreover, we demonstrate the presence of functional TRPC channels on Purkinje cell dendrites that are activated following stimulation of metabotropic glutamate receptors. Our results reveal cell-specific expression patterns for different TRPC proteins and suggest that developmental changes in TRPC protein expression may be required for proper postnatal cerebellar development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号