首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial communities of alluvial soils in the facies on islands in the Selenga estuary and near Stepnoi Dvorets and Istomino Settlements were studied. The distribution of the CFU-dominant microorganisms (Bacillus and Pseudomonas + Arthrobacter) has been revealed in the studied island soils. In addition, actinomycetes Streptomyces were found among the dominants in soils of the near-terrace floodplain. The quantitative distribution of microorganisms across soil layers was demonstrated. The effect of ecological factors in formation of microbial communities on the islands and central floodplain regions was revealed.  相似文献   

2.
Oxidation of homogentisic acid and gentisic acid by the enzyme of Poria subacida and the effect of α,α′-dipyridyl on their oxidation were studied through oxygen uptake using Warburg apparatus. The oxidation products of these two acids were investigated by their ultraviolet absorption spectra and by paperchromatography.  相似文献   

3.
木质素的微生物降解机制   总被引:6,自引:0,他引:6  
研究微生物降解木质素的反应机理,可以从根本上解释微生物或酶对木质素的作用过程,对提高木质素降解效率,治理环境污染等具有非常重要的意义。从木质素结构的差异出发,总结了近年来研究木质素微生物降解机制所采用的主要模型化合物、研究方法,概述了微生物对木质素的三大作用机理:侧链氧化、去甲基化和芳香环断裂,以及参与这三个反应的主要微生物。  相似文献   

4.
A new, quantitatively significant intermediate formed during lignin degradation by Streptomyces viridosporus T7A was isolated and characterized. In Streptomyces-inoculated cultures, the intermediate, an acid-precipitable, polyphenolic, polymeric lignin (APPL), accumulated in the growth medium. The APPL was a water-soluble polymer probably consisting of a heterogeneous mixture of molecular weight components of ≥20,000. APPLs were precipitable from culture filtrates after they had been acidified to pH <3 to 5. Noninoculated controls yielded little APPL, but supernatant solutions from inoculated cultures produced quantities of APPL that correlated with the biodegradability of the lignocellulose type. Maximal recovery of APPL was obtained from corn lignocellulose, reaching 30% of the initial lignin present in the substrate. APPLs contained small amounts of carbohydrate, organic nitrogen, and inorganic materials. The lignin origin of APPLs was confirmed by chemical analyses, which included acidolysis, permanganate oxidation, elemental analyses, functional group analyses, nuclear magnetic resonance spectroscopy, and 14C isotopic techniques. Analyses of APPLs from corn lignocelluloses showed that S. viridosporus-degraded APPLs were lignin derived but significantly different in structure from APPLs derived from uninoculated controls or from a standard corn milled-wood lignin. Degraded APPLs were enriched in phenolic hydroxyl groups and, to a small extent, in carboxyl groups. Degradative changes appeared to be largely oxidative and were thought to involve substantial cleavage of p-hydroxy ether linkages and methoxyl groups in the lignin.  相似文献   

5.
Pleurotus pulmonarius produced the strongest degradation of lignin during solid-state fermentation of [(sup14)C]lignin wheat straw with different fungi. A manganese-oxidizing peroxidase seemed to be involved in lignin attack, since the addition of Mn(sup2+) to the culture increased lignin mineralization by ca. 125%. This enzyme was purified and characterized from both solid-state fermentation and liquid cultures.  相似文献   

6.
The ability of 12 Cyathus species to degrade 14C-labeled lignin in kenaf was studied. The sum of 14C released into solution plus 14C released into the gas phase over a 32-day fermentation period was used to determine average daily rates of lignin biodegradation. Cyathus pallidus. C. africanus, and C. berkeleyanus delignified kenaf most rapidly. C. canna showed the greatest preference for lignin degradation over other plant components, and its rate of lignin degradation was only slightly lower than the three most active species. The apparent ability of fungi to metabolize low-molecular-weight lignin breakdown products correlated well with their overall delignification rates. C. stercoreus metabolized degradation products of lignin from wheat straw better than those from kenaf lignin, based on the amount of low-molecular-weight products left in solution.  相似文献   

7.
Trichloroethene (TCE) plumes extend north-northeast toward the Ohio River from the Paducah Gaseous Diffusion Plant (PGDP), a Superfund site in the Gulf Coastal Plain of western Kentucky. Wetlands in the floodplain are in the paths of these plumes, and on-site contamination has migrated downward from the Regional Gravel Aquifer (RGA) into the upper McNairy Formation, which overlies a bedrock aquifer. Intrinsic biodegradation in these two environments at the margins of the RGA could limit further contaminant migration and ecosystem or water-quality degradation. To assess cometabolic biodegradation potential in these uncontaminated environments, we attempted to culture and enumerate methanogens, sulfate- and Fe(III)-reducers, and methanotrophs, which have been implicated elsewhere as TCE degraders. Soil samples were collected at three wetland sites in the floodplain. McNairy sediments were collected beneath one of the suspected source areas at PGDP. Methanogens, sulfate reducers, and methanotrophs were abundant in wetland soils, with populations generally decreasing with depth. Methanogens were the only group cultured from McNairy sediments, and they showed little activity compared with wetland methanogen cultures. TCE loss in methanogenic batch cultures by chemoautotrophic and acetoclastic methanogens was monitored, but no significant degradation was observed.  相似文献   

8.
Invertebrate Biodiversity in Antarctic Dry Valley Soils and Sediments   总被引:7,自引:0,他引:7  
We studied invertebrate communities across a transition zone between soils and stream sediments in the cold desert landscape of Taylor Valley, Antarctica. We hypothesized that hydrological and biogeochemical linkages in the functionally important transition zone between streams and surrounding soils should be important in structuring invertebrate communities. We compared invertebrate communities along transects beginning in the saturated sediments under flowing stream water and extending laterally through the hyporheic zone to the dry soils that characterize most of the dry valley landscape. Nematodes, rotifers, and tardigrades assembled into different communities in soils and sediments, but there was no relationship between the total abundance of invertebrates and moisture. Community diversity was, however, influenced by the moisture and salinity gradients created with distance from flowing waters. The wet, low-salinity sediments in the center of the stream contained the most invertebrates and had the highest taxonomic diversity. Adjacent to the stream, communities in the hyporheic zone were influenced strongly by salt deposition. Abundance of invertebrates was low in the hyporheic zone, but this area contained the most co-occurring nematode species (three species). In dry soils, communities were composed almost entirely of a single species of nematode, Scottnema lindsayae, an organism not found in the stream center. These results suggest spatially-partitioned niches for invertebrates in soils and sediments in the dry valley landscape based on proximity to sources of moisture and the interactive effects of salinity. Received 22 September 1998; accepted 16 April 1999.  相似文献   

9.
10.
11.
Recently, several laboratory methods have been developed for the prediction of contaminant bioavailability. So far, none of these methods has been extensively tested for petroleum hydrocarbons. In the present study we investigated solid-phase extraction and persulfate oxidation for the prediction of total petroleum hydrocarbon (TPH) bioavailability. One sediment and two soil samples were subjected to solid-phase extraction, persulfate oxidation, and biodegradation, after which hydrocarbon removal was compared. It was demonstrated that a short solid-phase extraction (168?h) provided a good method for the prediction of the extent of TPH degradation in an optimized slurry reactor (84?d). Solid-phase extraction slightly underestimated the degradation of readily biodegradable hydrocarbons, whereas it slightly overestimated the degradation of poorly biodegradable hydrocarbons. Persulfate oxidation appeared to be unfit for the prediction of TPH bioavailability as persulfate was unable to oxidize hydrocarbons with a high ionization potential. Hydrocarbons that were affected were likely to be transformed rather than completely oxidized. Nevertheless, persulfate oxidation provided a good method for the prediction of polycyclic aromatic hydrocarbon (PAH) bioavailability.  相似文献   

12.
Previous studies have shown that a lignin-degrading system appears in cultures of the white rot fungus Phanerochaete chrysosporium in response to nitrogen starvation, apparently as part of secondary metabolism. We examined the influence of limiting carbohydrate, sulfur, or phosphorus and the effect of varying the concentrations of four trace metals, Ca, and Mg. Limitation of carbohydrate or sulfur but not limitation of phosphorus triggered ligninolytic activity. When only carbohydrate was limiting, supplementary carbohydrate caused a transient repression of activity. In carbohydrate-limited cultures, ligninolytic activity appeared when the supplied carbohydrate was depleted, and this activity was associated with a decrease in mycelial dry weight. The amount of lignin degraded depended on the amount of carbohydrate provided, which determined the amount of mycelium produced during primary growth. Carbohydrate-limited cultures synthesized only small amounts of the secondary metabolite veratryl alcohol compared with nitrogen-limited cultures. l-Glutamate sharply repressed ligninolytic activity in carbohydrate-starved cultures, but NH(4) did not. Ligninolytic activity was also triggered in cultures supplied with 37 muM sulfur as the only limiting nutrient. The balance of trace metals, Mg, and Ca was important for lignin degradation.  相似文献   

13.
A soil-inhabiting Fusarium proliferatum strain was capable of transforming or degrading nonlabeled and (sup14)C-labeled industrial, natural, and synthetic lignin. The mineralization rate per day (expressed as the percentage of added radioactivity recovered as to (sup14)CO(inf2)) was maximal during primary metabolism.  相似文献   

14.
Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high‐performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ‐H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(?). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7–105.7% with relative standard deviation (SD) of 0.12–3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first‐order kinetics. Preferential degradation of the (?)‐enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half‐lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. Chirality 26:155–159, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
16.
Triadimenol is a widely used triazole fungicide and consists of four stereoisomers with 1R,2S, 1S,2R, 1R,2R, and 1S,2S configurations. The trans‐enantiomeric pair (1R,2S‐isomer and 1S,2R‐isomer) is also called triadimenol‐A and the cis‐enantiomeric pair (1R,2R‐isomer and 1S,2S‐isomer) triadimenol‐B. In this study, the stereoselective degradation and chiral stability of triadimenol in two soils were investigated in details. The dissipation of technical triadimenol, a 6:1 mixture of triadimenol‐A and triadimenol‐B, showed significant epimerization from triadimenol‐A to triadimenol‐B occurred along with the dissipation process. The degradation exhibited some stereoselectivity, resulting in a concentration order of 1S,2S > 1R,2R > 1R,2S > 1S,2R or 1S,2S > 1R,2R > 1S,2R > 1R,2S at the end of the 100 days incubation for Baoding soil or Wuhan soil, respectively. Further incubation of triadimenol‐B revealed no epimerization, i.e. triadimenol‐B was configurationally stable in soil, and 1R,2R‐triadimenol degraded slightly slower in the former part and slightly faster in the later part of the incubation than 1S,2S‐triadimenol. Moreover, by incubation of enantiopure 1S,2R‐triadimenol and 1R,2S‐triadimenol, the results documented the epimerization for each enantiomer occurred at both C‐1 and C‐2 positions. Finally, the present work also documented that the enantiomerization reaction for all the four stereoisomers was nearly negligible in the soils. Chirality 25:355‐360:, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The anaerobic microbial oxidation of toluene to CO2 coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound anthraquinone-2,6-disulfonate (AQDS) were utilized as terminal electron acceptors. After 2 weeks of incubation, 50 and 85% of added uniformly labeled [13C]toluene were recovered as 13CO2 in HPSHA- and AQDS-supplemented APH sediment enrichment cultures, respectively; negligible recovery occurred in unsupplemented cultures. The conversion of [13C]toluene agreed with the high level of recovery of electrons as reduced humus or as anthrahydroquinone-2,6-disulfonate. APH sediment was also able to use nitrate and amorphous manganese dioxide as terminal electron acceptors to support the anaerobic biodegradation of toluene. The addition of substoichiometric amounts of humic acids to bioassay reaction mixtures containing amorphous ferric oxyhydroxide as a terminal electron acceptor led to more than 65% conversion of toluene (1 mM) after 11 weeks of incubation, a result which paralleled the partial recovery of electron equivalents as acid-extractable Fe(II). Negligible conversion of toluene and reduction of Fe(III) occurred in these bioassay reaction mixtures when humic acids were omitted. The present study provides clear quantitative evidence for the mineralization of an aromatic hydrocarbon by humus-respiring microorganisms. The results indicate that humic substances may significantly contribute to the intrinsic bioremediation of anaerobic sites contaminated with priority pollutants by serving as terminal electron acceptors.  相似文献   

18.
综述了木素、纤维素生物降解体系中除大分子之外,在降解过程中有重要作用的几种小分子介体,包括:羟基自由基,铁离子,草酸,锰离子,藜芦醇。并讨论他们在降解过程中的作用。  相似文献   

19.
Denitrification and Ammonia Formation in Anaerobic Coastal Sediments   总被引:5,自引:18,他引:5       下载免费PDF全文
Simultaneous determinations of nitrogen gas production, ammonia, and particulate organic nitrogen formation in the coastal sediments of Mangoku-Ura, Simoda Bay, and Tokyo Bay were made by using the 15N-label tracer method. The rate of nitrogen gas production in the sediment surface layer was about 10−2 μg atom of N per g per h, irrespective of the location of the sediments examined. [15N]ammonia and -particulate organic nitrogen accounted for 20 to 70% of the three products, and after several hours of incubation, the major fraction of nondenitrified 15N in Mangoku-Ura and Simoda Bay sediments was recovered as ammonia. In Tokyo Bay sediments, particulate organic nitrogen was produced at a greater rate than was ammonia. The reduction rate data suggest that the pathway of nitrate reduction to ammonia is important in coastal sediments.  相似文献   

20.
Biochemical Studies of Lignin Formation. I   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号