首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

2.
Putative nonautonomous transposable elements related to the autonomous transposons Tc1, Tc2, Tc5, andmariner were identified in theC. elegans database by computational analysis. These elements are found throughout theC. elegans genome and are defined by terminal inverted repeats with regions of sequence similarity, or identity, to the autonomous transposons. Similarity between loci containing related nonautonomous elements ends at, or near, the boundaries of the terminal inverted repeats. In most cases the terminal inverted repeats of the putative nonautonomous transposable elements are flanked by potential target-site duplications consistent with the associated autonomous elements. The nonautonomous elements identified vary considerably in size (from 100 by to 1.5 kb in length) and copy number in the available database and are localized to introns and flanking regions of a wide variety ofC. elegans genes. Correspondence to: W. Belknap  相似文献   

3.
We characterized an insertion mutant of the baculovirus Cydia pomonella granulovirus (CpGV), which contained a transposable element of 3.2 kb. This transposon, termed TCp3.2, has unusually long inverted terminal repeats (ITRs) of 756 bp and encodes a defective gene for a putative transposase. Amino acid sequence comparison of the defective transposase gene revealed a distant relationship to a putative transposon in Caenorhabditis elegans which also shares some similarity of the ITRs. Maximum parsimony analysis of the predicted amino acid sequences of Tc1- and mariner-like transposases available from the GenBank data base grouped TCp3.2 within the superfamily of Tc1-like transposons. DNA hybridization indicated that TCp3.2 originated from the genome of Cydia pomonella, which is the natural host of CpGV, and is present in less than 10 copies in the C. pomonella genome. The transposon TCp3.2 most likely was inserted into the viral genome during infection of host larvae. TCp3.2 and the recently characterized Tc1-like transposon TC14.7 (Jehle et al. 1995), which was also found in a CpGV mutant, represent a new family of transposons found in baculovirus genomes. The occasional horizontal escape of different types of host transposons into baculovirus genomes evokes the question about the possible role of baculoviruses as an interspecies vector in the horizontal transmission of insect transposons. Received: 27 February 1997 / Accepted: 16 May 1997  相似文献   

4.
The left (5) inverted terminal repeat (ITR) of the Mos1 mariner transposable element was altered by site-directed mutagenesis so that it exactly matched the nucleotide sequence of the right (3) ITR. The effects on the transposition frequency resulting from the use of two 3 ITRs, as well as those caused by the deletion of internal portions of the Mos1 element, were evaluated using plasmid-based transposition assays in Escherichia coli and Aedes aegypti. Donor constructs that utilized two 3 ITRs transposed with greater frequency in E. coli than did donor constructs with the wild-type ITR configuration. The lack of all but 10 bp of the internal sequence of Mos1 did not significantly affect the transposition frequency of a wild-type ITR donor. However, the lack of these internal sequences in a donor construct that utilized two 3 ITRs resulted in a further increase in transposition frequency. Conversely, the use of a donor construct with two 3 ITRs did not result in a significant increase in transposition in Ae. aegypti. Furthermore, deletion of a large portion of the internal Mos1 sequence resulted in the loss of transposition activity in the mosquito. The results of this study indicate the possible presence of a negative regulator of transposition located within the internal sequence, and suggest that the putative negative regulatory element may act to inhibit binding of the transposase to the left ITR. The results also indicate that host factors which are absent in E. coli, influence Mos1 transposition in Ae. aegypti.Communicated by G. P. Georgiev  相似文献   

5.
A transposable element has been isolated from the industrially important fungus Aspergillus niger (strain N402). The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. It had inserted at a TA site and appeared to have duplicated the target site upon insertion. The isolated element was found to be 4798 by in length and contained 37-bp inverted, imperfect, terminal repeats (ITRs). The sequence of the central region of the element revealed an open reading frame (designated ORF1) which showed similarity, at the amino acid level, to the transposase of the Tc1/mariner class of DNA transposons. Another sequence within the central region of the element showed similarity to the 3 coding and downstream untranslated region of the amyA gene of A. niger. Sequence homology and structural features indicate that this element, which has been named Ant1 (A. niger transposon 1), is related to the Tc1/mariner group of DNA transposons. Ant1 is apparently present as a single copy in strain N402 of A. niger.  相似文献   

6.
Brownlie JC  Whyard S 《Gene》2004,338(1):55-64
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. In the nematode Caenorhabditis elegans, there are eight copies of CemaT1 that are predicted to encode a functional transposase, with five copies being >99% identical. We present evidence, based on searches of publicly available databases and on PCR-based mobility assays, that the CemaT1 transposase is expressed in C. elegans and that the CemaT transposons are capable of excising in both somatic and germline tissues. We also show that the frequency of CemaT1 excisions within the genome of the N2 strain of C. elegans is comparable to that of the Tc1 transposon. However, unlike Tc transposons in mutator strains of C. elegans, maT transposons do not exhibit increased frequencies of mobility, suggesting that maT is not regulated by the same factors that control Tc activity in these strains. Finally, we show that CemaT1 transposons are capable of precise transpositions as well as orientation inversions at some loci, and thereby become members of an increasing number of identified active transposons within the C. elegans genome.  相似文献   

7.
A miniature inverted-repeat transposable element (MITE), designated as Hikkoshi, was previously identified in the null Wx-A1 allele of Turkish bread wheat lines. This MITE is 165 bp in size and has 12-bp terminal inverted repeats (TIRs) flanked by 8-bp target site duplications (TSDs). Southern and PCR analyses demonstrated the presence of multiple copies of Hikkoshi in the wheat genome. Database searches indicated that Hikkoshi MITEs are also present in barley, rice and maize. A 3.4-kb element that has Hikkoshi-like TIRs flanked by 8-bp TSDs has now been identified in the rice genome. This element shows high similarity to the 5 subterminal region of the wheat Hikkoshi MITE and contains a transposase (TPase) coding region. The TPase has two conserved domains, ZnF_TTF and hATC, and its amino acid sequence shows a high degree of homology to TPases encoded by Tip100 transposable elements belonging to the hAT superfamily. We designated the 3.4-kb element as OsHikkoshi. Several wheat clones deposited in EST databases showed sequence similarity to the TPase ORF of OsHikkoshi. The sequence information from the TPase of OsHikkoshi will thus be useful in isolating the autonomous element of the Hikkoshi system from wheat.  相似文献   

8.
Members of a novel Master family of class II transposons were identified in the carrot genome. Two elements, 2.5 kb long DcMaster1 and 4.4 kb long DcMaster-a, are characterized by 22 bp imperfect terminal inverted repeats and by 3 bp target site duplications. GenBank search revealed that related elements are also present in Medicago truncatula, including a 5.1 kb element MtMaster-a. Both DcMaster-a and MtMaster-a contain open reading frames encoding for putative transposases with the complete DDE domain typical for plant class II transposable elements belonging to PIF/Harbinger superfamily, where the Master elements form a distinct group. Less than 10 copies of the DcMaster element containing the DDE domain are present in genomes of carrot and other Apiaceae, but more copies with internal deletions or insertions may occur. DcMaster elements were associated with putative coding regions in 8 of 14 identified insertion sites. PCR amplification of carrot genomic DNA using a primer complementary to TIRs of DcMaster gave products <400 bp in size. We speculate that these may all represent a MITE-like family of transposable elements that we named Krak, present in the carrot genome in at least 3,600 copies. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers DQ250792 to DQ250807 and DQ353734 to DQ353752.  相似文献   

9.
Summary The origin of transfer (oriT) is the sequence within which conjugal transfer of plasmid DNA is initiated, and is absolutely required in cis for plasmid mobilization. We have cloned oriT from the 52 kb IncN plasmid R46 on a 600 bp fragment, and mapped the limits of the relevant sequence by deletion analysis and transposon mutagenesis. The nucleotide sequence of the oriT region contains 13 direct repeats of an 11 bp consensus sequence, 3 different pairs of 10 bp inverted repeats, and a segment that is extremely A-T rich. The direct repeats are within a region required for high frequency transfer and their sequence is such that their periodic alignment along the helix may induce curvature of the DNA. Analysis of Tn1725 insertions within the sequenced fragment of R46 revealed that, unlike most other transposons, transposition of Tn1725 can cause target sequence duplications of three different sizes.  相似文献   

10.
The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification. Sequence analysis of multiple copies of the EamaT1, which consisted of 0.9 and 1.4 kb elements, showed that the consensual EamaT1 with inverted terminal repeats (ITRs) of 69 bp was 1,422 bp long and flanked by a duplicated TA dinucleotide. The EamaT1 is present in approximately 120–250 copies per diploid genome but undergoes an inactivation process as a result of accumulating multiple mutations and is nonfunctional. The open reading frame (ORF) of the EamaT1 consensus encoding 356 amino acid sequences of transposase contained a DD37D signature and a conserved paired-like DNA binding motif for the transposition mechanism. The result of ITRs comparison confirmed their consensus terminal sequences (5′-CAGGGTG-3′) and AT-rich region on the internal bases for ITRs-transposase interaction.  相似文献   

11.
We isolated members of the retroposon family p-SINE1 in rice and found that one member contained an insertion. A 3-bp sequence at the insertion site within p-SINE1 appeared duplicated. The insertion sequence, 1536 bp in length, carried imperfect inverted repeats of about 13 bp at its termini which begin with 5-CACTA--- -3; these repeats are similar to those found in members of theEn/Spm transposable element family. These results indicate that the insertion sequence is a transposable element belonging to theEn/Spm family and is thus namedTnr3 (transposable element inrice no.3). In fact,Tnr3 carried long subterminal regions containing direct and inverted repeats of short DNA sequences of 15 bp, another characteristic of theEN/Spm family. The subterminal repeat sequences inTnr3 are, however, of two kinds, although they share homology with each other.Tnr3 and its relatives were present in multiple copies in rice. Considering the length ofTnr3, it cannot represent an autonomous type element, but is a non-autonomous element probably derived by deletion from an autonomous transposon.  相似文献   

12.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

13.
Summary We report here the discovery of a family of transposable elements, which we refer to as Fotl elements, in the fungal plant pathogen Fusarium oxysporum. The first element was identified as an insertion in the gene encoding nitrate reductase. It is 1928 by long, has 44 by inverted terminal repeats, contains a large open reading frame and is flanked by a 2 by (TA) target site duplication. This element shares significant structural similarities with a class of transposons that includes Tc1 from Caenorhabditis elegans and therefore represents a new class of transposable elements in fungi.  相似文献   

14.
15.
Summary We have identified two repetitive element families in the genome of the nematodeCaenorhabditis briggsae with extensive sequence identity to theCaenorhabditis elegans transposable element Tc1. Five members each of the TCb1 (previously known as Barney) and TCb2 families were isolated by hybridization to a Tc1 probe. Tc1-hybridizing repetitive elements were grouped into either the TCb1 or TCb2 family based on cross-hybridization intensities among theC. briggsae elements. The genomic copy number of the TCb1 family is 15 and the TCb2 family copy number is 33 in theC. briggsae strain G16. The two transposable element families show numerous genomic hybridization pattern differences between twoC. briggsae strains, suggestive of transpositional activity. Two members of the TCb1 family, TCb1#5 and TCb1#10, were sequenced. Each of these two elements had suffered an independent single large deletion. TCb1#5 had a 627-bp internal deletion and TCb1#10 had lost 316 bp of one end. The two sequenced TCb1 elements were highly conserved over the sequences they shared. A 1616-bp composite TCb1 element was constructed from TCb1#5 and TCb1#10. The composite TCb1 element has 80-bp terminal inverted repeats with three nucleotide mismatches and two open reading frames (ORFs) on opposite strands. TCb1 and the 1610-bp Tc1 share 58% overall nucleotide sequence identity, and the greatest similarity occurs in their ORF1 and inverted repeat termini.  相似文献   

16.
17.
A novel family of miniature transposable elements, named Zaba, was identified in pea (Pisum sativum) and subsequently also in other legume species using computer analysis of their DNA sequences. Zaba elements are 141–190 bp long, generate 10-bp target site duplications, and their terminal inverted repeats make up most of the sequence. Zaba elements thus resemble class 3 foldback transposons. The elements are only moderately repetitive in pea (tens to hundreds copies per haploid genome), but they are present in up to thousands of copies in the genomes of several Medicago and Vicia species. More detailed analysis of the elements from pea, including isolation of new sequences from a genomic library, revealed that a fraction of these elements are truncated, and that their last transposition probably did not occur recently. A search for Zaba sequences in EST databases showed that at least some elements are transcribed, most probably due to their association with genic regions.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Communicated by M.-A. Grandbastien  相似文献   

18.
Previous studies have shown that the transposase and the inverted terminal repeat (ITR) of the Mos1 mariner elements are suboptimal for transposition; and that hyperactive transposases and transposon with more efficient ITR configurations can be obtained by rational molecular engineering. In an attempt to determine the extent to which this element is suboptimal for transposition, we investigate here the impact of the three main DNA components on its transposition efficiency in bacteria and in vitro. We found that combinations of natural and synthetic ITRs obtained by systematic evolution of ligands by exponential enrichment did increase the transposition rate. We observed that when untranslated terminal regions were associated with their respective natural ITRs, they acted as transposition enhancers, probably via the early transposition steps. Finally, we demonstrated that the integrity of the Mos1 inner region was essential for transposition. These findings allowed us to propose prototypes of optimized Mos1 vectors, and to define the best sequence features of their associated marker cassettes. These vector prototypes were assayed in HeLa cells, in which Mos1 vectors had so far been found to be inactive. The results obtained revealed that using these prototypes does not circumvent this problem. However, such vectors can be expected to provide new tools for the use in genome engineering in systems such as Caenorhabditis elegans in which Mos1 is very active.  相似文献   

19.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Transposable elements represent important tools to perform functional studies in insects. In Drosophila melanogaster, the remobilization properties of transposable elements have been utilized for enhancer-trapping and insertional mutagenesis experiments, which have considerably helped in the functional characterization of the fruitfly genome. In Anopheles mosquitoes, the sole vectors of human malaria, as well as in other mosquito vectors of disease, the use of transposons has also been advocated to achieve the spread of anti-parasitic genes throughout field populations. Here we report on the post-integration behavior of the Minos transposon in both the germ-line and somatic tissues of Anopheles mosquitoes. Transgenic An. stephensi lines developed using the piggyBac transposon and expressing the Minos transposase were tested for their ability to remobilize an X-linked Minos element. Germ-line remobilization events were not detected, while somatic excisions and transpositions were consistently recovered. The analysis of these events showed that Minos activity in Anopheles cells is characterized by unconventional functionality of the transposon. In the two cases analyzed, re-integration of the transposon occurred onto the same X chromosome, suggesting a tendency for local hopping of Minos in the mosquito genome. This is the first report of the post-integration behavior of a transposable element in a human malaria vector. Christina Scali and Tony Nolan contributed equally to the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号