首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

2.
G J Chin 《Biochemistry》1985,24(21):5943-5947
Purified dog kidney (Na+,K+)-ATPase was reacted with tritiated sodium borohydride after treatment with neuraminidase and galactose oxidase. This procedure did not affect the ATPase activity of the enzyme, and all of the covalently bound radioactivity was found in the beta subunit (Mr 54 000). Papain digestion of the tritiated enzyme produced two labeled fragments of Mr 40 000 and 16 000. Further proteolysis generated an Mr 31 000 peptide from the larger fragment. Unlike the tryptic and chymotryptic sites of the alpha subunit, the sites of papain hydrolysis were insensitive to conformations of the (Na+,K+)-ATPase. Determination of the NH2-terminal sequences was used to arrange the fragments within the linear map of the beta chain. Finally, none of the labeled peptides was released from the membrane under nondenaturing conditions. These results are consistent with a model of the beta subunit containing a 40 000-dalton NH2-terminal piece and a 16 000-dalton COOH-terminal piece. Both fragments have extracellularly exposed carbohydrate and at least one membrane-bound domain.  相似文献   

3.
Glycogen synthase I was purified from rat skeletal muscle. On sodium dodecyl sulfate polyacrylamide gel electrophoresis, the enzyme migrated as a major band with a subunit Mr of 85,000. The specific activity (24 units/mg protein), activity ratio (the activity in the absence of glucose-6-P divided by the activity in the presence of glucose-6-P X 100) (92 +/- 2) and phosphate content (0.6 mol/mol subunit) were similar to the enzyme from rabbit skeletal muscle. Phosphorylation and inactivation of rat muscle glycogen synthase by casein kinase I, casein kinase II (glycogen synthase kinase 5), glycogen synthase kinase 3 (kinase FA), glycogen synthase kinase 4, phosphorylase b kinase, and the catalytic subunit of cAMP-dependent protein kinase were similar to those reported for rabbit muscle synthase. The greatest decrease in rat muscle glycogen synthase activity was seen after phosphorylation of the synthase by casein kinase I. Phosphopeptide maps of glycogen synthase were obtained by digesting the different 32P-labeled forms of glycogen synthase by CNBr, trypsin, or chymotrypsin. The CNBr peptides were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and the tryptic and chymotryptic peptides were separated by reversed-phase HPLC. Although the rat and rabbit forms of synthase gave similar peptide maps, there were significant differences between the phosphopeptides derived from the N-terminal region of rabbit glycogen synthase and the corresponding peptides presumably derived from the N-terminal region of rat glycogen synthase. For CNBr peptides, the apparent Mr was 12,500 for rat and 12,000 for the rabbit. The tryptic peptides obtained from the two species had different retention times. A single chymotryptic peptide was produced from rat skeletal muscle glycogen synthase after phosphorylation by phosphorylase kinase whereas two peptides were obtained with the rabbit enzyme. These results indicate that the N-terminus of rabbit glycogen synthase, which contains four phosphorylatable residues (Kuret et al. (1985) Eur. J. Biochem. 151, 39-48), is different from the N-terminus of rat glycogen synthase.  相似文献   

4.
The (Na+,K+) ATPase in plasma membranes isolated from rat adipocytes is insensitive to insulin (Lytton J., Lin, J.C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184). For this reason, the characteristics of the (Na+,K+) pump in adipocyte ghosts, prepared by hypotonic lysis of adipocytes (Rodbell, M. (1967) J. Biol. Chem. 242, 5744-5750), were studied. Herein it is demonstrated that the (Na+,K+) pump in ghosts is identical to that described in isolated plasma membranes, sharing the following characteristics: 1) the Ki values for ouabain are 1.3 x 10(-7) M and 4.5 x 10(-5) M for the alpha 2 and alpha 1 isozymes, respectively; 2) the K0.5 values for sodium are 11.4 +/- 1.6 and 7.2 +/- 3.8 mM for the alpha 2 and alpha 1 isozymes, respectively; 3) both forms of the (Na+,K+) pump are insensitive to insulin stimulation, presumably because the activities are already maximal. The ghosts are not in an insulin-stimulated state because the activity of the glucose transporter is not increased as it is in ghosts prepared from insulin-treated cells. In addition, presented evidence demonstrates that ghost internal sodium concentration, [Na+]i, is very sensitive to changes in the activity of the (Na+,K+) pump. If the [Na+]i, of adipocytes is also very sensitive to the activity of the (Na+,K+) pump, the mechanism of insulin stimulation of the adipocyte (Na+,K+) pump requires reexamination.  相似文献   

5.
Nicotinic cholinergic receptor proteins purified from rat brain by immunoaffinity chromatography were characterized using the anti-S3 polyclonal antibody vs. the anti-idiotypic monoclonal antibody 422F11 (generated against an antibody to nicotine). Anti-S3 IgG was purified to homogeneity; anti-S3-Sepharose 4B and 422F11-Sepharose 4B each depleted 3H-nicotine binding sites from brain. Nicotinic receptors isolated from both immunoaffinity columns showed major bands (silver-stained) at 55K and 70K. Using anti-S3 serum as probe, Western blots of nicotinic receptors isolated by the two immunoaffinity gels also showed major bands at 55 and 70K. However, Western blots of fresh brain extracts revealed a major band at 80K and minor bands at 55K and 70K. These results show similar nicotinic cholinergic receptor proteins isolated by the anti-S3 and 422F11 anti-idiotypic antibodies; 80K was dominant only when fresh brain extract was subjected to Western blotting without prior immunoaffinity purification.  相似文献   

6.
Earlier studies (Periyasamy, S. M., Huang, W.-H., and Askari, A. (1983) J. Biol. Chem. 258, 9878-9885) suggested that Cu2+ and o-phenanthroline induced the formation of cross-linked homodimers between alpha-subunits of the erythrocyte (Na+,K+)-ATPase. This was interpreted as indicating that alpha-subunits existed in close proximity in native erythrocyte membranes. The alpha-subunit and band 3 monomers have similar molecular weights (M(r) approximately 100,000) and exist in the membrane in molar ratios of approximately 1:3000 alpha-subunit:band 3. We explored the possibility that alpha-subunit and band 3 could be induced to form heterodimeric structures in the presence of cross-linking reagents. Using methods similar to those employed in the above-cited reference we demonstrated that cross-linked dimers containing phosphorylated alpha-subunits had proteolytic sensitivity that was inconsistent with the formation of alpha-subunit homodimers and fully consistent with heterodimer formation between alpha-subunit and band 3. The data also indicated that alpha-subunit-band 3 heterodimer formation is dependent on the conformational state of the (Na+,K+)-ATPase. Using the appropriate reagents we obtained cross-linked products which were consistent with heterodimer formation between alpha- and beta-subunits of the (Na+,K+)-ATPase. Our data argue against a close association between pairs of (Na+,K+)-ATPase alpha-subunits in the human red cell membrane.  相似文献   

7.
8-Azido-ATP (8-N3ATP) is a substrate of (Na+ + K+)-ATPase from pork kidney and photoinactivates it by binding to the Mr = 100 000 alpha-subunit. The photoinactivation requires the presence of Mg2+ even though 8-azido-ATP is recognized by the high-affinity ATP binding site (Kd = 3.1 microM). K+ ions protect the enzyme against photoinactivation as does excess ATP. To see whether the Mg2+-requirement of the photoinactivation is due to the action of free Mg2+ or to the existence of an Mg X 8-azido-ATP complex, the action of the stable Mg X ATP complex analogue, chromium X 8-N3ATP (Cr X 8-N3ATP), was studied. Cr X 8-N3ATP photoinactivates (Na+ + K+)-ATPase in the absence of Mg2+, but the photoinactivation is enhanced by Mg2+, indicating that the formation of a Mg X ATP complex is an absolute requirement for photoinactivation. However, the interaction of Mg2+ with a low-affinity site also enhances the photoinactivation. It is therefore concluded that interactions with MgATP and free Mg induce conformational changes in the purine subsite of the high-affinity ATP binding site. Controlled trypsinolysis of the [alpha-32P]8-N3ATP-photolabelled enzyme in the presence of K+ results in the formation of an Mr = 56 000 radioactive peptide, whereas trypsinolysis of a [gamma-32P]Cr X ATP-labelled enzyme under identical conditions forms an Mr = 41 000 radioactive peptide. Extensive trypsinolysis of the [alpha-32P] 8-N3ATP-photolabelled alpha-subunit leads to the formation of a radioactive peptide of Mr = 1800.  相似文献   

8.
Localization of selective proteolytic splits in alpha-subunit of (Na+ + K+)-ATPase is important for understanding the mechanism of active Na+,K+-transport. Proteolytic fragments of alpha-subunit from pig kidney were purified by chromatography in NaDodSO4 on TSK 3000 SW columns. NH2-terminal amino acid sequences of fragments as determined in a gas phase sequenator were unambiguously located within the total sequence of alpha-subunit from sheep kidney (Shull, C.E., et al. (1985) Nature 316, 691-695) and pig kidney (Ovchinnikov, Y.A., et al. (1985) Proc. Acad. Sci. USSR 285, 1490-1495). The primary chymotryptic split in the E1-form is located between Leu-266 and Ala-267 while the tryptic cleavage site appears to be between Arg-262 and Ile-263 (Bond 3). Tryptic cleavage in the initial fast phase of inactivation of the E1-form is located between Lys-30 and Glu-31 (Bond 2). In the E2-form, primary tryptic cleavage is between Arg-438 and Ala-439 (Bond 1). Chymotryptic cleavage between Leu-266 and Ala-267 stabilizes the E1-form of the protein without affecting the sites for binding of cations or nucleotides. Titration of fluorescence responses demonstrates the importance of the NH2-terminal for E1-E2 transition. Protonation of His-13 facilitates transition from E1- to E2-forms of the protein. Removal of His-13 after cleavage of bond 2 can explain the increase in apparent affinity of the cleaved enzyme for Na+ and the shift in poise of E1-E2 equilibrium in direction of E1-forms. The NH2-terminal sequence in renal alpha-subunit is not conserved in alpha + from rat neurolemma or in alpha-subunit from Torpedo or brine shrimp. A regulatory function of the NH2-terminal part of the alpha-subunit may thus be a unique feature of the alpha-subunit in (Na+ + K+)-ATPase from mammalian kidney.  相似文献   

9.
A ouabain p-aminobenzenediazonium derivative with a high specific radioactivity has been synthesized from ouabain and used as a photolabel for the (sodium plus potassium)-activated adenosinetriphosphatase from Electrophorus electricus electric organ and from dog kidney. In the dark it binds reversibly to the digitalis receptor site, with binding characteristics comparable to those of ouabain. The photoactivation of the ouabain derivative to produced covalent labeling of the receptor was obtained by energy transfer from a tryptophan residue in the (Na+,K+)ATPase to the ouabain p-aminobenzenediazonium molecule bound at the active site. The great advantage of this procedure compared to previous methods is that free molecules of the photoactivatable derivative are not photodecomposed. Analysis of the photolabeled polypeptides on sodium dodecyl sulfate gel electrophoresis showed that over 90% of the total radioactivity incorporated was found in the large molecular weight alpha-chain of the kidney enzyme (Mr 93 000). The same specific labeling of the alpha-subunit was obtained with a crude microsomal fraction from Electrophorus electricus. A mild tryptic fragmentation of the subunit into two peptide fragments of Mr 58 000 and 41 000, respectively, shows that the digitalis receptor is located in the N-terminal 41 000 fragment.  相似文献   

10.
Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase   总被引:12,自引:0,他引:12  
The K0.5 for intracellular sodium of the two forms of (Na+,K+)-ATPase which exist in rat adipocytes (Lytton, J., Lin, J. C., and Guidotti, G. (1985) J. Biol. Chem. 260, 1177-1184) has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na+ pump and allow sodium to equilibrate into the cell. The activity of Na+,K+)-ATPase was then monitored with 86Rb+/K+ pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and 22Na+ tracer equilibration were used to determine the actual intracellular [Na+] under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular [Na+] nor on the Vmax of 86Rb+/K+ pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha (p less than 0.025 versus control) and 33 mM for alpha(+) (p less than 0.005 versus control). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions. Measurement of the K0.5 for sodium ion of (Na+,K+)-ATPase in membranes isolated from adipocytes revealed only a single component of activation with a low K0.5 of 3.5 or 12 mM in the presence of 10 or 100 mM KCl, respectively. Insulin treatment of the isolated membranes or of the cells prior to membrane separation had no effect on these values.  相似文献   

11.
A novel hepatic enzyme, glutathione S-transferase K, is described that, unlike previously characterized transferases, possesses little affinity for S-hexylglutathione-Sepharose 6B but can be isolated because it binds to a glutathione affinity matrix. A purification scheme for this new enzyme was devised, with the use of DEAE-cellulose, S-hexylglutathione-Sepharose 6B, glutathione-Sepharose 6B and hydroxyapatite chromatography. The final hydroxyapatite step results in the elution of three chromatographically interconvertible forms, K1, K2 and K3. The purified protein has an isoelectric point of 6.1 and comprises subunits that are designated Yk (Mr 25,000); during sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, it migrates marginally faster than the Ya subunit but slower than the pulmonary Yf monomer (Mr 24,500). Transferase K displays catalytic, immunochemical and physical properties that are distinct from those of other liver transferases. Tryptic peptide maps suggest that transferase K is a homodimer, or comprises closely homologous subunits. The tryptic fingerprints also demonstrate that, although transferase K is structurally separate from previously described hepatic forms, a limited sequence homology exists between the Yk, Ya and Yc polypeptides. These structural data are in accord with the immunochemical results presented in the accompanying paper [Hayes & Mantle (1986) Biochem. J. 233, 779-788].  相似文献   

12.
The role of the rat liver plasma membrane in the regulation of uptake and subsequent deiodination of thyroxine (T4) or the biologically active thyroid hormone 3,3',5-triiodothyronine (T3) was investigated. Here we report on the production of monoclonal antibodies raised against rat hepatocytes. Two antibodies were selected. Antibody ER-22 did bind to a Mr 52,000 membrane protein and inhibited the 1- and 5-min uptake of both T4 and T3 by primary cultured rat hepatocytes in a dose-dependent fashion. As the uptake of T4 and T3 depends on the presence of a sodium gradient over the plasma membrane, the inhibitory potency of ER-22 on the Na+,K+-ATPase activity was investigated. No inhibition of the uptake of 86Rb+ could be determined, indicating that antibody ER-22 is not directed against the Na+,K+-ATPase but probably the carrier protein itself. Clearance of T3 from the medium and concomitant iodide production by cultured rat hepatocytes during a 20-h incubation in the presence of ER-22 were both inhibited by 50% with respect to a control incubation in the absence of monoclonal antibody, pointing to the importance of carrier-mediated transport in cellular uptake and metabolism of T3. A second monoclonal antibody did bind to two other plasma membrane proteins but did not inhibit transport of thyroid hormone.  相似文献   

13.
To better understand the adaptive strategies that led to freshwater invasion by hyper-regulating Crustacea, we prepared a microsomal (Na+, K+)-ATPase by differential centrifugation of a gill homogenate from the freshwater shrimp Macrobrachium olfersii. Sucrose gradient centrifugation revealed a light fraction containing most of the (Na+, K+)-ATPase activity, contaminated with other ATPases, and a heavy fraction containing negligible (Na+, K+)-ATPase activity. Western blotting showed that M. olfersii gill contains a single alpha-subunit isoform of about 110 kDa. The (Na+, K+)-ATPase hydrolyzed ATP with Michaelis Menten kinetics with K5, = 165+/-5 microM and Vmax = 686.1+/-24.7 U mg(-1). Stimulation by potassium (K0.5 = 2.4+/-0.1 mM) and magnesium ions (K0.5 = 0.76+/-0.03 mM) also obeyed Michaelis-Menten kinetics, while that by sodium ions (K0.5 = 6.0+/-0.2 mM) exhibited site site interactions (n = 1.6). Ouabain (K0.5 = 61.6+/-2.8 microM) and vanadate (K0.5 = 3.2+/-0.1 microM) inhibited up to 70% of the total ATPase activity, while thapsigargin and ethacrynic acid did not affect activity. The remaining 30% activity was inhibited by oligomycin, sodium azide and bafilomycin A. These data suggest that the (Na+, K+)-ATPase corresponds to about 70% of the total ATPase activity; the remaining 30%, i.e. the ouabain-insensitive ATPase activity, apparently correspond to F0F1- and V-ATPases, but not Ca-stimulated and Na- or K-stimulated ATPases. The data confirm the recent invasion of the freshwater biotope by M. olfersii and suggest that (Na+, K+)-ATPase activity may be regulated by the Na+ concentration of the external medium.  相似文献   

14.
We have identified and characterized a novel ATP diphosphohydrolase (ATPDase) with features of E-type ATPases from porcine liver. Immunoblotting with a specific monoclonal antibody to this ectoenzyme revealed high expression in liver with lesser amounts in kidney and duodenum. This ATPDase was localized by immunohistochemistry to the bile canalicular domain of hepatocytes and to the luminal side of the renal ductular epithelium. In contrast, ATPDase/cd39 was detected in vascular endothelium and smooth muscle in these organs. We purified the putative ATPDase from liver by immunoaffinity techniques and obtained a heavily glycosylated protein with a molecular mass estimated at 75 kDa. This enzyme hydrolyzed all tri- and diphosphonucleosides but not AMP or diadenosine polyphosphates. There was an absolute requirement for divalent cations (Ca(2+) > Mg(2+)). Biochemical activity was unaffected by sodium azide or other inhibitors of ATPases. Kinetic parameters derived from purified preparations of hepatic ATPDase indicated V(max) of 8.5 units/mg of protein with apparent K(m) of 100 microM for both ATP or ADP as substrates. NH(2)-terminal amino acid sequencing revealed near 50% identity with rat liver lysosomal (Ca(2+)-Mg(2+))-ATPase. The different biochemical properties and localization of the hepatic ATPDase suggest pathophysiological functions that are distinct from the vascular ATPDase/cd39.  相似文献   

15.
Purification of alpha 2-plasmin inhibitor (alpha 2PI) from human plasma by affinity chromatography on plasminogen-Sepharose resulted in copurification of a contaminating protein with Mr 17,000 as judged by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. This contaminating protein could not be removed from the purified alpha 2-PI preparation by several types of gel chromatography applied. The use of the kringle 1-3 part of plasminogen, K(1 + 2 + 3), bound to Sepharose for affinity chromatography, instead of plasminogen-Sepharose, resulted in an alpha 2PI preparation without this contaminant. The contaminating protein was found to interact specifically with the kringle 4 part of plasminogen (K4) and not with K(1 + 2 + 3) or miniplasminogen. The K4-binding protein was purified by ammonium sulphate precipitation, affinity chromatography on K4-Sepharose, ion-exchange chromatography and gel filtration on AcA 34. The relative molecular mass of the protein (Mr 68 000) was estimated by gel filtration. This suggests a tetrameric protein composed of four subunits (Mr 17,000), that are dissociated by 1% sodium dodecyl sulphate. Dissociation into subunits was also demonstrated by gel filtration in the presence of 6 M guanidine hydrochloride. A specific antibody was raised in rabbits against the purified protein and this antibody was shown not to react with any known fibrinolytic components. The pI of the K4-binding protein was found to be 5.8. The first three N-terminal amino acids were determined to be Glu-Pro-Pro. The concentration of the protein in plasma was estimated to be 0.20 +/- 0.03 microM (15 +/- 2 mg/l). The electrophoretic mobility of the K4-binding protein was shown by crossed immunoelectrophoresis to be influenced by the presence of Ca2+, EDTA and heparin. The protein was found to enhance plasminogen activation catalyzed by tissue-type plasminogen activator (t-PA) in the presence of poly(D-lysine). The protein appeared to be a novel plasma protein tentatively called 'tetranectin'.  相似文献   

16.
A rat brain cDNA library was screened by using as a probe a fragment of cDNA encoding the alpha-subunit of human Na+,K+-ATPase. Two different cDNA clones were obtained and analyzed. One of them was concluded to be a cDNA encoding the alpha-subunit of the weakly ouabain-sensitive rat kidney-type Na+,K+-ATPase. The deduced amino acid sequence consists of 1,018 amino acids. The alpha-subunit of the rat kidney-type Na+,K+-ATPase shows 97% homology in amino acid sequence with the alpha-subunit of human, sheep, or pig enzyme and 87% with that of Torpedo. Based on a comparison of the amino acid sequence at the extracellular domain of the alpha-subunit between weakly ouabain-sensitive rat kidney-type enzyme and the ouabain-sensitive human, sheep, pig, or Torpedo enzyme, it was proposed that only two significant amino acid replacements are unique to the rat kidney-type alpha-subunit. Another cDNA clone obtained showed 72% homology in nucleotide sequence with the former cDNA coding the alpha-subunit of the rat kidney-type Na+,K+-ATPase and the deduced amino acid sequence exhibited 85% homology with that of the alpha-subunit of rat kidney-type Na+,K+-ATPase.  相似文献   

17.
This study examined the changes in protein phosphorylation in response to cholinergic (muscarinic) stimulation of salivary secretion in the rat submandibular gland. Carbachol stimulation was associated with phosphorylation in a number of protein bands as detected by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and autoradiography. The molecular masses (Mr) of two proteins, in which the amount of phosphorylation more than doubled in response to carbachol, were 22,000 and 96,000. The Mr 96,000 protein precipitated at 120,000 X g while most of the Mr 22,000 protein remained in the supernatant at this speed. The effect of carbachol on the phosphorylation of the Mr 22,000 and 96,000 proteins was blocked by atropine, indicating that the cholinergic receptor involved is muscarinic. The time course of phosphorylation of the Mr 22,000 protein consisted of a rapid increase in phosphorylation within the first min of carbachol stimulation. This increased phosphorylation persisted for less than 1 min. The increased phosphorylation of the Mr 96,000 protein also occurred within the first min but it persisted for at least 10 min. However, removal of the muscarinic agonist, carbachol, resulted in the rapid dephosphorylation of this protein. When the plasma membranes were purified, the Mr 96,000 protein was phosphorylated by ATP in the presence of Na+ and Mg2+. It was dephosphorylated by K+. This proves that the Mr 96,000 dalton protein is the alpha-subunit of the (Na+ + K+)-ATPase.  相似文献   

18.
Analysis of sodium-22 binding to purified sodium + potassium ion-activated adenosine triphosphatase (Na+, K+)-ATPase reveals the presence of two classes of binding sites. The higher affinity site (Kd = 0.2 mM) binds 6 to 7 nmol of sodium per mg of protein. Pretreatment of (Na+, K+)-ATPase with ouabain blocks the binding of sodium to this higher affinity site. Neither heat-denatured enzyme nor phospholipids extracted from the (Na+, K+)-ATPase contain a ouabain-inhibitable, higher affinity sodium binding site. The ouabain enzyme complex therefore appears to contain altered binding sites for cations.  相似文献   

19.
A series of Northern blot hybridization experiments using probes derived from the rat gastric H+,K(+)-ATPase cDNA and the human ATP1AL1 gene revealed the presence of a 4.3-kilobase mRNA in colon that seemed likely to encode the distal colon H+,K(+)-ATPase, the enzyme responsible for K+ absorption in mammalian colon. A rat colon library was then screened using a probe from the ATP1AL1 gene, and cDNAs containing the entire coding sequence of a new P-type ATPase were isolated and characterized. The deduced polypeptide is 1036 amino acids in length and has an Mr of 114,842. The protein exhibits 63% amino acid identity to the gastric H+,K(+)-ATPase alpha-subunit and 63% identity to the three Na+,K(+)-ATPase alpha-subunit isoforms, consistent with the possibility that it is a K(+)-transporting ATPase. Northern blot analyses show that the 4.3-kilobase mRNA is expressed at high levels in distal colon; at much lower levels in proximal colon, kidney, and uterus; and at trace levels in heart and forestomach. The high mRNA levels in distal colon and the similarity of the colon pump to both gastric H+,K(+)- and Na+,K(+)-ATPases suggest that it is the distal colon H+,K(+)-ATPase. Furthermore, expression of its mRNA in kidney raises the possibility that the enzyme also corresponds to the H+,K(+)-ATPase that seems to play a role in K+ absorption and H+ secretion in the distal nephron.  相似文献   

20.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号