首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryonic chick (7–9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionicf strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7–9-day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio in newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanined by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase.  相似文献   

2.
Embryonic chick (7-9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionic strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7--9 day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio of newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanied by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase.  相似文献   

3.
Continuous perfusion of rat hearts with concentrations of forskolin between 0.1 and 12 microM resulted in transient increases in tension after 45 s, followed by a return to the control value after 5 min. In contrast, the content of cyclic AMP increased linearly with time over this period, reaching values up to 35 times control after 5 min. Increases in contractile force, intracellular cyclic AMP concentration and the proportion of phosphorylase in the a form were dependent on the concentration of forskolin when measured 45 s and 120 s after initiation of perfusion. In hearts perfused for 45 s with various concentrations of forskolin, the measured cyclic AMP-dependent protein kinase activity ratio and phosphorylase a content for a given measured intracellular cyclic AMP concentration were both much less than the corresponding values in hearts perfused for 30 s with various concentrations of isoprenaline. The phosphorylation of the contractile proteins troponin-I and C-protein also showed a concentration-dependent increase in hearts perfused with forskolin. There was a strong correlation between the cyclic AMP-dependent protein kinase activity ratios and the phosphorylation of the contractile proteins under all perfusion conditions. These results suggest that cyclic AMP is compartmented in perfused rat heart, and that much of the cyclic AMP produced in response to forskolin is unavailable to activate cyclic AMP-dependent protein kinase.  相似文献   

4.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

5.
Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes   总被引:16,自引:0,他引:16  
We have studied the compartmentation of cyclic AMP action in purified ventricular cardiomyocytes prepared by collagenase perfusion of adult rabbit hearts. Incubation of purified adult myocytes with 1 microM isoproterenol causes rapid accumulation of intracellular cyclic AMP in both soluble (2.3 leads to 7.7 pmol/ mg of protein) and particulate (3.0 leads to 9.2) fractions of cell homogenates (3000 X g for 5 min), increases in the total activity and activity ratio of soluble cyclic AMP-dependent protein kinase (0.21 leads to 0.66), a decrease in protein kinase activity remaining in the particulate fraction (47 leads to 30%), and an increase in the activity ratio of glycogen phosphorylase (0.15 leads to 0.47). Incubation of myocytes with 10 microM prostaglandin E1 (PGE1) leads to a comparable increase in soluble cyclic AMP (2.3 leads to 5.8 pmol/mg of protein) and activation of soluble cyclic AMP-dependent protein kinase (0.21 leads to 0.39) but does not result in any change in cAMP or protein kinase in the particulate fraction and fails to cause an activation of glycogen phosphorylase. PGE1 does not inhibit the effects of isoproterenol; when myocytes are incubated with both isoproterenol and PGE1, the accumulation of cyclic AMP, activation of cAMP-dependent protein kinase and phosphorylase b leads to a conversion are equal to that achieved with isoproterenol alone. Perturbation of cellular calcium using the ionophore A23187, verapamil, or high or low extracellular calcium did not alter the ability of isoproterenol to cause activation of particulate cAMP-dependent protein kinase or influence the inability of PGE1 to do so. Activation of adenylate cyclase by forskolin (30 microM) caused immediate activation of both soluble and particulate cAMP-dependent protein kinase leading to rapid activation of phosphorylase. We conclude that the hormonally specific compartmentation of cyclic AMP and cAMP-dependent protein kinase that occurs in intact heart (Hayes, J. S., Brunton, L. L., Brown, J. H., Reese, J. B., and Mayer, S. E. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 1570-1574) is not explained on the basis of cellular heterogeneity but has a subcellular basis within the cardiomyocyte.  相似文献   

6.
Chinese hamster ovary cells were synchronized by selective detachment of cells in mitosis. The adenosine 3':5'-cyclic monophosphate (cyclic AMP) intracellular concentrations and cyclic AMP-dependent protein kinase activities were measured as these cells traversed G1 phase and entered S phase. Protein kinase activity, assayed in the presence or absence of saturating exogenous cyclic AMP in the reaction mixture, was lowest in early G1 phase (2 h after mitosis), increased 2-fold (plus exogenous cyclic AMP in reaction mixture) or 3.5-fold (minus cyclic AMP in reaction mixture) to maximum values in mid to late G1 phase (4-5 h after mitosis), and then decreased as cells entered S phase. Intracellular cyclic AMP concentrations were minimal 1 h after mitosis, increased 5-fold to maximum levels at 4-6 after mitosis, and decreased as cells entered S phase. Similar to the fluctuations in intracellular cyclic AMP, the cyclic AMP-dependent protein kinase activity ratio increased more than 40% in late G1 or early S phase. Puromycin (either 10 mug/ml or 50 mug/ml) administered 1 h after mitosis inhibited cyclic AMP-dependent protein kinase activity up to 50% by 5 h after mitosis, while similar treatment (10 mug/ml) had no effect on the increase in cyclic AMP formation. These data demonstrate that: (1) total protein kinase activity changed during G1 phase and this increase was dependent on new protein synthesis; (2) the increased intracellular concentrations of cyclic AMP were not dependent on new protein synthesis; and (3) the activation of cyclic AMP-dependent protein kinase was temporally coordinated with increased intracellular concentration of cycli AMP as Chinese hamster ovary cells traversed G1 phase and entered S phase. These results suggest that cyclic AMP acts during G1 phase to regulate the activation of cyclic AMP-dependent protein kinase.  相似文献   

7.
DEAE-cellulose chromatography of the 20,000g supernatant fraction of homogenates of C-1300 murine neuroblastoma (clone N2a) yields one major and two minor peaks of cyclic AMP-dependent protein kinase activity. Assessment of the endogenous activation state of the enzyme(s) reveals that the enzyme is fully activated by the treatment of whole cells with adenosine (10 μM) in the presence of the phosphodiesterase inhibitor Ro 20 1724 (0.7 mM). This treatment produces a large elevation in the cyclic AMP content of the cells. The treatment of whole cells with adenosine alone (1–100 μM) or Ro 20 1724 alone (0.1–0.7 mM) produces minimal elevations in cyclic AMP but nevertheless causes significant activations of cyclic AMP-dependent protein kinase. The autophosphorylation of whole homogenates of treated and untreated cells was studied using [γ-32P] ATP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Treatments which activate cyclic AMP-dependent protein kinase selectively stimulate the incorporation of 32P into several proteins. This stimulation is most prominent in the 15,000-dalton protein band. The addition of cyclic AMP to phosphorylation reactions containing homogenate of untreated cells stimulates the phosphorylation of the same protein bands. These results indicate that adenosine may have regulatory functions through its effect on the cyclic AMP: cyclic AMP-dependent protein kinase system.  相似文献   

8.
The effect of vasopressin on the toad urinary bladder has been shown to be mediated by cyclic AMP. It has been assumed that, as demonstrated for other systems, this involves activation of cyclic AMP-dependent protein kinase. In order to test this hypothesis we investigated the effect of vasopressin on cyclic AMP-dependent protein kinases in epithelial cells of toad bladders. About 80% of protein kinase activity and cyclic AMP-binding capacity was found to be in the cytosol. DEAE-cellulose chromatography showed a pattern of 15--20% type I and 80--85% type II cyclic AMP-dependent protein kinase. Cytosolic kinase was activated 3--4-fold by cyclic AMP with half-maximal activation at 5 . 10(-8) M. Similarly, half-maximal binding of cyclic AMP occurred at 7 . 10(-8) M. Incubation of toad bladders in Ringer's solution containing 0.1 mM 3-isobutyl-1-methylxanthine, prior to homogenization and assay, showed stable cyclic AMP-binding capacity and protein kinase ratio --cyclic AMP/+cyclic AMP. Exposure of bladders to 10 mU/ml of vasopressin for 10 min caused intracellular activation of protein kinase and decrease in cyclic AMP-binding capacity that were maintained for at least 30 min. Incubation of bladders with increasing concentrations of vasopressin (0.5--100 mU/ml) resulted in a discrepancy between a progressive increase in cyclic AMP levels and a levelling off at 10 mU/ml of vasopressin for the changes in protein kinase ratio and cyclic AMP-binding capacity. The increase in kinase ratio was due to higher activity in the absence of exogenous cyclic AMP and was fully inhibitable by a specific protein kinase inhibitor. Using Sephadex G-25-CM50 column chromatography for separation of holoenzyme and free catalytic subunit we demonstrated that the activation of protein kinase in the vasopressin-treated bladders is due to intracellular dissociation of the kinase. These results show that the effect of vasopressin on the toad bladder involves activation of a cytosolic cyclic AMP-dependent protein kinase. The time course and the dose-response curve of the kinase activation closely parallel vasopressin's effect on osmotic water flow.  相似文献   

9.
The effects of forskolin, Ro 20-1724, rolipram, and 3-isobutyl-1-methylxanthine (IBMX) on morphine-evoked release of adenosine from dorsal spinal cord synaptosomes were evaluated to examine the potential involvement of cyclic AMP in this action of morphine. Ro 20-1724 (1-100 microM), rolipram (1-100 microM), and forskolin (1-10 microM) increased basal release of adenosine, and at 1 microM inhibited morphine-evoked release of adenosine. Release of adenosine by Ro 20-1724, rolipram, and forskolin was reduced 42-77% in the presence of alpha,beta-methylene ADP and GMP, which inhibits ecto-5'-nucleotidase activity by 81%, indicating that this adenosine originated predominantly as nucleotide(s). Significant amounts of adenosine also were released from the ventral spinal cord by these agents. Ro 20-1724 and rolipram did not significantly alter the uptake of adenosine into synaptosomes. Although Ro 20-1724 and rolipram had only limited effects on the extrasynaptosomal conversion of added cyclic AMP to adenosine, IBMX, a phosphodiesterase inhibitor with a broader spectrum of inhibitory activity for phosphodiesterase isoenzymes, significantly inhibited the conversion of cyclic AMP to adenosine and resulted in recovery of a substantial amount of cyclic AMP. As with the non-xanthine phosphodiesterase inhibitors, IBMX increased basal release of adenosine and reduced morphine-evoked release of adenosine. Adenosine released by IBMX was reduced 70% in the presence of alpha,beta-methylene ADP and GMP, and release from the ventral spinal cord was 61% of that from the dorsal spinal cord. Collectively, these results indicate that forskolin and phosphodiesterase inhibitors release nucleotide(s) which is (are) converted extrasynaptosomally to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Protein kinase activity of lymphocytes isolated from human subjects was assayed using histone as substrate. The activity was stimulated about twofold by cyclic AMP and total enzyme activity, determined in the presence of cyclic AMP, was inhibited by 65% by the specific heat-stable inhibitor of cyclic AMP-dependent protein kinase. Histone phosphorylation was not stimulated by cyclic GMP in the presence of the inhibitor. Cyclic AMP-dependent protein kinase could be activated in vitro by incubating intact cells with isoproterenol or with forskolin and was reflected by a significant (P less than 0.05) increase in the protein kinase activity ratio. In contrast to these well-characterized adenylate cyclase activators, incubating cells for up to 2 hr in vitro in the presence of the specific beta-blocker propranolol had no significant effect on the amount of cyclic AMP-dependent protein kinase that was in the activated state. When compared in subjects between the ages of 21 and 74 years, lymphocyte protein kinase activity was unaltered by age or gender. These results indicate that cyclic nucleotide-dependent protein kinase is of the cyclic AMP-dependent variety in the human lymphocyte. A low amount of the cyclic AMP-dependent activity (about 15%) is in the already activated state in freshly isolated cells, and this is not further reduced by incubation in vitro or by beta-blockade. In contrast to previously reported changes in the capacity to synthesize cyclic AMP, lymphocyte protein kinase is unaltered by gender or age in human subjects.  相似文献   

11.
Cultured arterial smooth muscle cells have been found to contain an activatable neutral cholesteryl esterase (EC 3.1.1.13). This enzyme is similar to that previously described in adipose tissue, adrenal cortex, and aortic homogenates. Although both the lysosomal (acid) and cytoplasmic (neutral) cholesteryl esterases were activated two- to threefold by the addition of 100 microM dibutyryl cyclic AMP, only neutral cholesteryl esterase was responsive to 100 microM dibutyryl cyclic AMP, 10 mM MgATP, and 50 micrograms/ml exogenous protein kinase when added together. Protein kinase inhibitor (10 micrograms/ml) reversed the action of cyclic AMP-dependent protein kinase; deactivation of neutral cholesteryl esterase was also shown to occur with 50 micrograms/ml phosphoprotein phosphatase. In addition, 0.2 microM prostacyclin, 50 microM forskolin, and an agonist of the beta-adrenergic receptor, 5 microM isoproterenol, significantly stimulated intracellular cyclic AMP accumulation and activated cholesteryl esterase in arterial smooth muscle cells. The data indicate that neutral cholesteryl esterase in arterial smooth muscle cells can be modulated by a phosphorylation-dephosphorylation system involving the cyclic AMP-dependent protein kinase-phosphoprotein phosphatase. Regulation of cholesteryl esterase by this mechanism may affect lipid accumulation in these arterial cells.  相似文献   

12.
Cyclic adenosine monophosphate (cAMP)-mediated signal transduction was evaluated in synaptosomes prepared from rat brain cortex. Adenylate cyclase was responsive to known adenylate cyclase stimulators including peptides (CRH and VIP), catecholamines (norepinephrine and isoproterenol) and ligands that directly stimulate adenylate cyclase (forskolin). Cyclic AMP accumulation also increased approximately 2 to 3-fold, but none of the agonists was able significantly to activate cyclic AMP-dependent protein kinase (A-kinase) in cortical synaptosomes. However, in parallel studies with slices prepared from rat brain cortex, adenylate cyclase activity, cAMP accumulation and A-kinase activity were all stimulated by CRH, VIP, norepinephrine, isoproterenol and forskolin. These data suggest that, in intact synaptosomes, either the cellular machinery which facilitates binding of cAMP to the regulatory subunit of A-kinase is missing or the cAMP produced by adenylate cyclase is not accessible to A-kinase.  相似文献   

13.
The aim of this study was to investigate the role of cyclic AMP in the regulation of tryptophan hydroxylase activity localized in retinal photoreceptor cells of Xenopus laevis, where the enzyme plays a key role in circadian melatonin biosynthesis. In photoreceptor-enriched retinas that lack serotonergic neurons, tryptophan hydroxylase activity is markedly stimulated by treatments that increase intracellular levels of cyclic AMP or activate cyclic AMP-dependent protein kinase, including forskolin, phosphodiesterase inhibitors, and cyclic AMP analogues. In contrast, cyclic AMP has no effect on tryptophan hydroxylase mRNA abundance. Experiments using cycloheximide and actinomycin D demonstrate that cyclic AMP exerts its regulatory effect via posttranslational mechanisms mediated by cyclic AMP-dependent protein kinase. The effect of cyclic AMP is independent of the phase of the photoperiod, suggesting that the nucleotide is not a mediator of the circadian rhythm of tryptophan hydroxylase. Cyclic AMP accumulation is higher in darkness than in light, as is tryptophan hydroxylase activity. Furthermore, the stimulatory effect of forskolin and that of darkness are inhibited by H89, an inhibitor of cyclic AMP-dependent protein kinase. In conclusion, cyclic AMP may mediate the acute effects of light and darkness on tryptophan hydroxylase activity of retinal photoreceptor cells.  相似文献   

14.
In rat hepatocytes, vanadate modifies neither the intracellular concentration of cyclic AMP nor the --cyclic AMP/+cyclic AMP activity ratio for cyclic AMP-dependent protein kinase. Vanadate can, however, counteract the increase in cyclic AMP and the increase in the --cyclic AMP/+cyclic AMP activity ratio of cyclic AMP-dependent protein kinase induced by glucagon. On the other hand, vanadate treatment of hepatocytes can produce a time- and concentration-dependent increase in cyclic AMP- and Ca2+-independent casein kinase activity. Maximal activation at the optimal time with 5 mM-vanadate was about 70% over control. A clear relationship was observed between the activation of casein kinase and the inactivation of glycogen synthase after vanadate treatment. These results suggest that casein kinase activity may be involved in vanadate actions in rat hepatocytes.  相似文献   

15.
Several compounds have been tested for their activity as inhibitors of 3′,5′-nucleotide phosphodiesterase in brain cortical slices from guinea pig. SQ 20,009 (1-ethyl-4-isopropylidenehydrazino)-1H-pyrazolo (3,4-b)pyridine-5-carboxylate, ethylester, hydrochloride), a very potent inhibitor of 3′,5′-nucleotide phosphodiesterase from rat and rabbit brain shows only moderate activity as 3′,5′-nucleotide phosphodiesterase inhibitor when tested in brain slices. It enhances cyclic AMP accumulation only when slices are stimulated by histamine. It does not affect cyclic AMP levels when histamine/norepinephrine are used as stimuli of cyclic AMP formation and decreases the activity of adenosine as stimulant slightly. Ro 20–1724 (4-(3-butoxy-4-methoxy)-2-imidazolidinone) a potent inhibitor of canine cerebral cortex PDE activity effectively augments the increase in cyclic AMP under all stimulating conditions mentioned, as does to a somewhat smaller extent the more water soluble Ro 20–2926 (4-(3-ethoxy-ethoxy-4-methoxy)-2-imidazolidinone). Dose-response curves for Ro 20–1724 under three stimulating conditions of increased cyclic AMP formation (0.1 mm histamine, 0.1 mm histamine/0.1 mm norepinephrine, 0.1 mm adenosine) yield an ED50 of about 20 μm in all instances. A significant increase over respective controls is seen even at 1 μm Ro 20–1724 (histamine/norepinephrine). The drugs may be useful as tools for studying the regulation of cyclic AMP levels in the central nervous system.  相似文献   

16.
The diterpene forskolin markedly activates adenylate cyclase in membranes from various rat brain regions and elicits marked accumulations of radioactive cyclic AMP in adenine-labeled slices from cerebral cortex, cerebellum, hippocampus, striatum, superior colliculi, hypothalamus, thalamus, and medulla-pons. In cerebral cortical slices, forskolin has half-maximal effects at 20-30 microM on cyclic AMP levels, both alone and in the presence of the phosphodiesterase inhibitor ZK 62771. The presence of a very low dose of forskolin (1 microM) can augment the response of brain cyclic AMP-generating systems to norepinephrine, isoproterenol, histamine, serotonin, dopamine, adenosine, prostaglandin E2, and vasoactive intestinal peptide. Forskolin does not augment responses to combinations of histamine-norepinephrine adenosine-norepinephrine, or histamine-adenosine. For norepinephrine and isoproterenol in rat cerebral cortical slices and for histamine in guinea pig cerebral cortical slices, the presence of 1 microM-forskolin augments the apparent efficacy of the amine, whereas for adenosine, prostaglandin E2, and vasoactive intestinal peptide, the major effect of 1 microM-forskolin is to increase the apparent potency of the stimulatory agent. In rat striatal slices, forskolin reveals a significant response of cyclic AMP systems to dopamine and augments the dopamine-elicited activation of adenylate cyclase in rat striatal membranes. The activation of cyclic AMP systems by forskolin is rapid and reversible, and appears to involve both direct activation of adenylate cyclase and facilitation and/or enhancement of receptor-mediated activation of the enzyme.  相似文献   

17.
Studies were carried out to elucidate the mechanisms underlying the diminished phosphorylation of cerebral ribosomal protein in experimental hyperphenylalaninaemia [Roberts & Morelos (1980) Biochem. J.190, 405-419]. Administration of N(6),O(2)'-dibutyryl cyclic AMP or 3-isobutyl-1-methylxanthine, which increased phosphorylation of the S6 protein of cerebral 40S ribosomal subunits in control infant rats, did not counteract the decreased phosphorylation of this ribosomal protein resulting from intraperitoneal administration of a loading dose of l-phenylalanine. N(2),O(2)'-Dibutyryl cyclic GMP had no effect on cerebral ribosomal-protein phosphorylation in either control or hyperphenylalaninaemic animals. The phenylalanine-induced decrease in ribosomal-protein phosphorylation was associated with decreased protein kinase activity in cerebral cytosolic and microsomal preparations. However, the maximal protein kinase response to cyclic AMP added in vitro was unaltered by prior administration of phenylalanine in vivo. The heat-stable protein inhibitor of cyclic AMP-dependent protein kinases decreased the activity of these enzymes by about 90% and eliminated the phenylalanine-induced difference in protein kinase activity in the absence of added cyclic AMP. Intracisternal administration of doses of dibutyryl cyclic AMP or 3-isobutyl-1-methylxanthine which increased the cyclic AMP-dependent protein kinase activity ratio in control infant rats was without effect on this index in phenylalanine-treated animals. Dibutyryl cyclic GMP had no effect on the protein kinase activity ratio in either group of animals. These results suggest that inhibition of cerebral cyclic AMP-dependent protein kinases by abnormally high concentrations of phenylalanine may contribute to the decrease in cerebral ribosomal-protein phosphorylation in experimental hyperphenylalaninaemia.  相似文献   

18.
The effect of a lethal toxic fragment of staphylococcal alpha-toxin on the activity of adenosine 3',5'-monophosphate(cyclic AMP)-dependent protein kinase was examined. 1. The lethal toxic fragment produced a dose-dependent decrease in both the binding of cyclic AMP to the regulatory subunit and phosphorylation activity of cyclic AMP-dependent protein kinase obtained from rabbit skeletal muscles up to a plateau at a 50% inhibitory effect. The decrease in the activity of protein kinase observed with low doses of the lethal toxic fragment (0.1 microM) resulted from a competitive inhibition, probably by its interaction with the cyclic AMP-binding site in the regulatory subunit molecule. 2. The effects of a lethal toxic fragment and epinephrine on the cyclic AMP level and protein kinase activity were investigated in the perfused rabbit heart slices. The lethal toxic fragment attenuated the stimulation of cyclic AMP-dependent protein kinase activity ratio by epinephrine. 3. It is suggested that the specific action of a lethal toxic fragment on the cellular membrane enzymes may be attributable to the inhibition of the cyclic AMP-dependent protein kinase activity.  相似文献   

19.
The role of cyclic AMP on endothelial cell proliferation was investigated, since these cells can be exposed to high concentrations of physiological and pharmacological agents that alter cyclic AMP metabolism. Cloned bovine aortic endothelial cells were plated at 25,000 cells/35mm dish and grown for 5 days in the presence of phosphodiesterase (PDE) inhibitors, forskolin, or cyclic AMP analogs. The PDE inhibitors dipyridamole, ZK 62 711, isobutylmethylxanthine (IBMX) and theophylline inhibited cell growth in a concentration-dependent manner. Dipyridamole produced a 30% and a 50% inhibition at 5 microM and 12.5 microM, while higher concentrations were cytotoxic. At its therapeutic plasma concentration range (50-100 microM) theophylline inhibited cell proliferation by 15-25%, while IBMX and the highly specific cyclic AMP phosphodiesterase inhibitor, ZK 62 711 inhibited growth by 60-80% and 40-50%, respectively. Forskolin (5 microM) increased cyclic AMP levels and cyclic AMP-kinase activity ratios by 2.5-fold and 2-fold. In the absence of PDE inhibitors forskolin produced a 20% growth inhibition at 0.5 microM and a 60% inhibition at 10 microM. The forskolin dose-response curve was not altered by theophylline, but was shifted to the left by approximately 10-fold with dipyridamole and ZK 62 711 and 5-fold with IBMX. Forskolin (5 microM), by itself produced a 1.8-fold increase in cyclic AMP. In the presence of 5 microM theophylline, dipyridamole, IBMX, and ZK 62 711, cyclic AMP was increased by forskolin 2.0, 2.6, 3.5, and 6.6-fold, respectively. 8-Bromo cyclic AMP and dibutyryl cyclic AMP produced a 55% and 60% growth inhibition at 100 microM. The cyclic GMP analogs were less effective inhibitors of growth (15-30%). Our results demonstrate that cyclic AMP analogs and pharmacological agents that elevate intracellular cyclic AMP levels inhibit cell growth and suggest that cyclic AMP may be an important endogenous regulator of endothelial cell proliferation.  相似文献   

20.
Synthetic atriopeptin II, an atrial natriuretic factor with potent vasodilatory effects, was studied in isolated strips of rat thoracic aorta to determine its actions on contractility, cyclic nucleotide concentrations and endogenous activity of cyclic nucleotide-dependent protein kinases. Atriopeptin II was found to relax aortic strips precontracted with 0.3 microM norepinephrine whether or not the endothelial layer was present. Relaxation to atriopeptin II was closely correlated in a time- and concentration-dependent manner with increases in cyclic GMP concentrations and activation of cyclic GMP-dependent protein kinase (cyclic GMP-kinase). The threshold concentration for all three effects was 1 nM. Atriopeptin II (10 nM for 10 min) produced an 80% relaxation, an 8-fold increase in cyclic GMP concentrations and a 2-fold increase in cyclic GMP-kinase activity ratios. Atriopeptin II did not significantly alter cyclic AMP concentrations or cyclic AMP-dependent protein kinase activity. These data suggest that cyclic GMP and cyclic GMP-kinase may mediate vascular relaxation to a new class of vasoactive agents, the atrial natriuretic factors. Similar effects have been observed with the nitrovasodilator, sodium nitroprusside, and the endothelium-dependent vasodilator, acetylcholine. Therefore, a common biochemical mechanism of action that includes cyclic GMP accumulation and activation of cyclic GMP-kinase may be involved in vascular relaxation to nitrovasodilators, endothelium-dependent vasodilators and atrial natriuretic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号