首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work was to evaluate the potential for (1)O(2) to induce oxidation of cellular DNA. For this purpose cells were incubated in the presence of a water-soluble endoperoxide whose thermal decomposition leads to the formation of singlet oxygen. Thereafter, DNA was extracted and the level of several modified DNA bases was determined by HPLC analysis coupled to a tandem mass spectrometric detection. A significant increase in the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine was observed upon incubation of the cells with the chemical generator of (1)O(2), whereas the level of the other DNA bases measured remained unchanged. To demonstrate that singlet oxygen is directly involved in the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine, the corresponding (18)O-labeled endoperoxide was used. Incubation of the cells with such a generator of (18)O-labeled singlet oxygen results in the formation of (18)O-labeled 8-oxo-7,8-dihydro-2'-deoxyguanosine in the nuclear DNA. This result clearly demonstrates that singlet oxygen, when released within cells, is able to directly oxidize cellular DNA.  相似文献   

2.
Human A549 lung epithelial cells were challenged with 18O-labeled hydrogen peroxide ([18O]-H2O2), the total RNA and DNA extracted in parallel, and analyzed for 18O-labeled 8-oxo-7,8-dihydroguanosine ([18O]-8-oxoGuo) and 8-oxo-7,8-dihydro-2'-deoxyguanosine ([18O]-8-oxodGuo) respectively, using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-MS/MS). [18O]-H2O2 exposure resulted in dose-response formation of both [18O]-8-oxoGuo and [18O]-8-oxodGuo and 18O-labeling of guanine in RNA was 14-25 times more common than in DNA. Kinetics of formation and subsequent removal of oxidized nucleic acids adducts were also monitored up to 24 h. The A549 showed slow turnover rates of adducts in RNA and DNA giving half-lives of approximately 12.5 h for [18O]-8-oxoGuo in RNA and 20.7 h for [18O]-8-oxodGuo in DNA, respectively.  相似文献   

3.
Singlet oxygen ((1)O(2)) is capable of inducing genotoxic, carcinogenic and mutagenic effects. It has previously been reported that the reaction of (1)O(2) with 2'-deoxyguanosine, which is a major target of (1)O(2) among the DNA constituents, leads to formation of various oxidized products including 8-oxo-7,8-dihydro-2'-deoxyguanosine and spiroiminodihydantoin, amino-imidazolone and diamino-oxazolone nucleosides. In addition to these products, we report that a novel diimino-imidazole nucleoside, 2,5-diimino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-2H,5H-imidazole (dD), is formed by reaction of 2'-deoxyguanosine with (1)O(2) generated by irradiation with visible light in the presence of methylene blue under aerobic conditions. Its identification is based on identical chromatographic and spectroscopic data with an authentic compound, which we recently isolated and characterised from the reaction mixture of 2'-deoxyguanosine with reagent HOCl and a myeloperoxidase-H(2)O(2)-Cl(-) system. The yield of dD was increased by D(2)O and decreased by azide. dD was not generated from 8-oxo-7,8-dihydro-2'-deoxyguanosine. These results indicate that dD is generated by (1)O(2) directly from 2'-deoxyguanosine, but not via 8-oxo-7,8-dihydro-2'-deoxyguanosine. dD may play a role in the genotoxicity of singlet oxygen in cells.  相似文献   

4.
It is now well established that oxidation of 2'-deoxyguanosine (dGuo) in DNA by singlet molecular oxygen [O2 (1Delta(g))] produces 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), whereas the main degradation products of free dGuo in aqueous solution have been identified as the two diastereomers of spiroiminodihydantoin nucleoside. Interestingly, O2 (1Delta(g))-mediated oxidation of free 8-oxodGuo gives rise to a pattern of degradation products that is different from that observed when the nucleoside is inserted into DNA. The reasons for these differences and the mechanisms involved in the oxidation reactions are not yet completely understood for either dGuo or 8-oxodGuo, either free or within DNA. In the present work, we report a study of the reaction of O2 (1Delta(g)) toward a modified nucleoside, 8-methoxy-2'-deoxyguanosine (8-MeOdGuo), either free or incorporated into an oligonucleotide. The reason for the choice of 8-MeOdGuo as a chemical model to study in more detail the oxidation pathways of 8-oxodGuo or, more precisely, of the tautomeric 8-hydroxy-2'-deoxyguanosine was dictated by the fact that only the 7,8-enolic tautomer is present in the molecule. The thermolysis of an endoperoxide of a naphthalene derivative as a clean chemical source of 18O-labeled O2 (1Delta(g)) was used to oxidize 8-MeOdGuo. The main O2 (1Delta(g)) oxidation products that were separated and analyzed by HPLC coupled to tandem mass spectrometry were identified as the 2'-deoxyribonucleoside derivatives of 2,2,4-triamino-5-(2H)oxazolone, 2,5-diamino-4H-imidazol-4-one together with the methyl-substituted derivatives of spiroiminodihydantoin, oxidized iminoallantoin and urea. On the other hand, O2 (1Delta(g)) oxidation of 8-MeOdGuo-containing oligonucleotide generated imidazolone as the predominant degradation product. These results provided new mechanistic insights into the reactions of O2 (1Delta(g)) with purine nucleosides.  相似文献   

5.
A water-soluble [18O]-labeled endoperoxide derived from N,N'-di(2,3-dihydroxypropyl)-1,4-naphthalene-dipropanamide (DHPN18O2) has been shown to act as a clean chemical source of [18O]-labeled molecular singlet oxygen. This allows the assessment of the singlet oxygen (1O2) reactivity toward biological targets such as DNA. The present work focuses on the qualitative identification of the main 1O2-oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine, which was achieved using high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Thus, the [18O]-labeled and unlabeled imidazolone and oxazolone, together with the diastereoisomeric spiroiminodihydantoin nucleosides, were detected as the main degradation products. In addition, a modified nucleoside that exhibits similar features as those of the oxidized guanidinohydantoin molecule was detected. Our data strongly suggest that the imidazolone and oxazolone nucleosides are generated via the rearrangement of an unstable 5-hydroperoxide intermediate. Interestingly, the combined use of appropriate tools, including isotopically labeled singlet oxygen and the high- resolution HPLC-ESI-MS/MS technique, has allowed to shed new light on the 1O2-mediated oxidation reactions of guanine DNA components.  相似文献   

6.
Recent intervention studies revealed that beta-carotene supplement to smokers resulted in a higher incidence of lung cancer. However, the causal mechanisms remain to be clarified. We reported here that vitamin A (retinol) and its derivative (retinal) caused cellular DNA cleavage detected by pulsed field gel electrophoresis. Retinol and retinal significantly induced 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in HL-60 cells but not in H(2)O(2)-resistant HP100 cells, suggesting the involvement of H(2)O(2) in cellular DNA damage. Experiments using (32)P-labeled isolated DNA demonstrated that retinol and retinal caused Cu(II)-mediated DNA damage, which was inhibited by catalase. UV-visible spectroscopic and electron spin resonance-trapping studies revealed the generation of superoxide and carbon-centered radicals, respectively. The superoxide generation during autoxidation of retinoids was significantly correlated with the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, although the yield of carbon-centered radicals was not necessarily related to the intensity of DNA damage. These findings suggest that superoxide generated by autoxidation of retinoids was dismutated to H(2)O(2), which was responsible for DNA damage in the presence of endogenous metals. Retinol and retinal have prooxidant abilities, which might lead to carcinogenesis of the supplements of beta-carotene.  相似文献   

7.
Oxidation reactions that involve several oxygen and nitrogen reactive species together with nucleobase radical cations give rise among various classes of lesions to modified bases. About 70 of oxidized nucleosides that include diastereomeric forms have been characterized in mechanistic studies involving isolated DNA and related model compounds. However, only eight modified bases have been accurately measured within cellular DNA upon exposure to either gamma or UVA radiations. Emphasis is placed in this survey on recent developments of HPLC associated with tandem mass spectrometry (MS/MS) operating in the mild electrospray ionization mode. Interestingly, the HPLC-MS/MS assay in the multiple reaction monitoring mode appears to be the more sensitive and accurate method currently available for singling out several oxidized nucleosides including 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxo-7,8-dihydro-2'-deoxyadenosine, 5-formyl-2'-deoxyuridine, 5-(hydroxymethyl-2'-deoxyuridine, 5-hydroxy-2'-deoxyuridine, and the four diastereomers of 5,6-dihydroxy-5,6-dihydrothymidine within isolated and cellular DNA. However, one limitation of the assay that also applied to all chromatographic methods is the slight side-oxidation of normal bases during DNA extraction and subsequent work-up. This explains why the combined use of DNA repair glycosylases with either the comet assay or the alkaline elution technique is a better alternative to monitor the formation of low levels of oxidized bases within cellular DNA.  相似文献   

8.
We determined the mitochondrial membrane status, presence of reactive oxygen species (ROS), and oxidative DNA adduct formation in normal human oral keratinocytes (NHOK) during senescence. The senescent cells showed accumulation of intracellular ROS and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), a major oxidative DNA adduct. Exposure of cells to H2O2 induced 8-oxo-dG accumulation in cellular DNA, which was rapidly removed in replicating NHOK. However, the 8-oxo-dG removal activity was almost completely abolished in the senescing culture. Both replicating and senescing NHOK expressed readily detectable 8-oxo-dG DNA glycosylase (hOGG1), the enzyme responsible for glycosidic cleavage of 8-oxo-dG. After exposure to H2O2, however, the intranuclear level of the hOGG1-alpha isoform was decreased in senescing but not in replicating NHOK. These results indicated that senescing NHOK accumulated oxidative DNA lesions in part due to increased level of endogenous ROS and impaired intranuclear translocation of hOGG1 enzyme upon exposure to oxidative stress.  相似文献   

9.
This review discusses recent aspects of oxidation reactions of DNA and model compounds involving mostly OH radicals, one-electron transfer process and singlet oxygen (1O2). Emphasis is placed on the formation of double DNA lesions involving a purine base on one hand and either a pyrimidine base or a 2-deoxyribose moiety on the other hand. Structural and mechanistic information is also provided on secondary oxidation reactions of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), a major DNA marker of oxidative stress. Another major topic which is addressed here deals with recent developments in the measurement of oxidative base damage to cellular DNA. This has been mostly achieved using the accurate and highly specific HPLC method coupled with the tandem mass spectrometry detection technique. Interestingly, optimized conditions of DNA extraction and subsequent work-up allow the accurate measurement of 11 modified nucleosides and bases within cellular DNA upon exposure to oxidizing agents, including UVA and ionizing radiations. In addition, the modified comet assay, which involves the use of bacterial DNA N-glycosylases to reveal two main classes of oxidative base damage, is applicable to isolated cells and is particularly suitable when only small amounts of biological material are available. Finally, recently available data on the substrate specificity of DNA repair enzymes belonging to the base excision pathways are briefly reviewed.  相似文献   

10.
8-Oxo-7,8-dihydroguanine (8-hydroxyguanine) is oxidized more easily than normal nucleobases, which can produce spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). These secondary oxidation products of 8-oxo-7,8-dihydroguanine are highly mutagenic when formed within DNA. To evaluate the mutagenicity of the corresponding oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-hydroxy-2'- deoxyguanosine 5'-triphosphate) in the nucleotide pool, Escherichia coli cells deficient in the mutT gene were treated with H(2)O(2), and the induced mutations were analyzed. Moreover, the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh were also introduced into competent E. coli cells. The H(2)O(2) treatment of mutT E. coli cells resulted in increase of G:C → T:A and A:T → T:A mutations. However, the incorporation of exogenous Sp and Gh 2'-deoxyribonucleotides did not significantly increase the mutation frequency. These results suggested that the oxidation product(s) of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate induces G:C → T:A and A:T → T:A mutations, and that the 2'-deoxyriboside 5'-triphosphate derivatives of Sp and Gh exhibit quite weak mutagenicity, in contrast to the bases in DNA.  相似文献   

11.
It appears that the labile iron pool (LIP, low molecular weight iron) presence in cells can result in the production of reactive oxygen species (ROS). ROS may be responsible for the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in cellular DNA. In the present study we report on the relationship between LIP and the endogenous level of 8-oxodGuo in human lymphocytes. Good correlation has been determined between LIP and the oxidatively modified nucleoside. This in turn points out the possibility that under physiological condition there is the availability of LIP for catalyzing Fenton-type reactions in close proximity to cellular DNA. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0335-x.  相似文献   

12.
Phytic acid (myo-inositol hexaphosphate) is one of the most promising cancer chemopreventive agents. We investigated the mechanism by which phytic acid expresses preventive action to cancer. Phytic acid inhibited the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in cultured cells treated with an H2O2-generating system, although it did not scavenge H2O2. Site-specific DNA damage by H2O2 and Cu(II) at GG and GGG sequences was inhibited by phytic acid, but not by myo-inositol. Phytic acid alone did not cause DNA damage and thus, it should not act as a prooxidant. We conclude that phytic acid acts as an antioxidant to inhibit the generation of reactive oxygen species from H2O2 by chelating metals, resulting in chemoprevention of cancer.  相似文献   

13.
6-Nitro- and 8-nitro-5-deazaflavin derivatives have been found to enhance prominently the radiation-induced formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) at the expense of formation of 2,6-diamino-4-hydroxy-5-formamidopyrimidine nucleosides (FapydGuo) both in deaerated and in N(2)O saturated aqueous 2'-deoxyguanosine solutions. The radiosensitizing capacity of a 9-nitro-5-deazflavin derivative was observed only in the N(2)O saturated aqueous solutions.  相似文献   

14.
Increased risks of cancers and oxidative DNA damage have been observed in diabetic patients. Many endogenous aldehydes such as 3-deoxyglucosone and glyceraldehyde (GA) increase under hyperglycemic conditions. We showed that these aldehydes induced Cu(II)-mediated DNA damage, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. GA had the strongest ability to damage DNA, and addition of low concentrations of H2O2 markedly enhanced the DNA damage. GA significantly increased 8-oxodG formation in human cultured cells (HL-60), and H2O2 enhanced it. We conclude that oxidative DNA damage by hyperglycemia-related aldehydes, especially GA, and marked enhancement of DNA damage by H2O2 may participate in diabetes-associated carcinogenesis.  相似文献   

15.
Kim JE  Choi S  Yoo JA  Chung MH 《FEBS letters》2004,556(1-3):104-110
7,8-Dihydro-8-oxoguanine (8-oxoguanine; 8-oxo-G), one of the major oxidative DNA adducts, is highly susceptible to further oxidation by radicals. We confirmed the higher reactivity of 8-oxo-G toward reactive oxygen (singlet oxygen and hydroxyl radical) or nitrogen (peroxynitrite) species as compared to unmodified base. In this study, we raised the question about the effect of this high reactivity toward radicals on intramolecular and intermolecular DNA damage. We found that the amount of intact nucleoside in oligodeoxynucleotide containing 8-oxo-G decreased more by various radicals at higher levels of 8-oxo-G incorporation, and that the oligodeoxynucleotide damage and plasmid cleavage by hydroxyl radical were inhibited in the presence of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG). We conclude that 8-oxo-G within DNA induces intramolecular DNA base damage, but that free 8-oxo-G protects intermolecular DNA from oxidative stress. These results suggest that 8-oxo-G within DNA must be rapidly released to protect DNA from overall oxidative damage.  相似文献   

16.
During the last three decades there was an increasing interest for developing biomarkers of oxidative stress. Therefore, efforts have been made to develop sensitive methods aimed at measuring cellular levels of oxidatively generated DNA lesions. Initially, most attention had focused on 8-oxo-7,8-dihydro-2'- deoxyguanosine (8-oxodGuo) probably because reliable analytical methods (mostly HPLC coupled to electrochemical detection) were available since mid-eighties to detect that lesion at the cellular level. With the recent development of more versatile analytical (using mass spectrometric detection) and biochemical assays (such as the comet assay) efforts are currently made to measure simultaneously several DNA lesions. The main degradation pathways of the four main pyrimidine (thymine, cytosine) and purine (adenine, guanine) bases mediated by hydroxyl radical (?OH), one-electron oxidants and singlet oxygen (1O2) have been also studied in detail and results indicate that other DNA modification than 8-oxodGuo could represent suitable biomarkers of oxidative stress. In this review article, the main oxidative degradation products of DNA will be presented together with their mechanisms of formation. Then the developed methods aimed at measuring cellular levels of oxidatively generated DNA lesions will be critically reviewed based on their specificity, versatility and sensitivity. Illustration of the powerfulness of the described methods will be demonstrated using quantification of DNA lesions in cells exposed to ionizing radiations. In addition, recent work highlighting the possible formation of complex DNA lesions will be reported and commented regarding the possibility of using such complex damage as potential biomarkers of oxidative stress.  相似文献   

17.
Fluoroquinolone antibacterials, which have been used for the treatment of a variety of infectious diseases, are reported to be photocarcinogenic. We investigated the mechanisms of DNA damage by UVA radiation (365 nm) plus fluoroquinolone antibacterials using 32P-labeled DNA fragments obtained from the human c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. Photocarcinogenic nalidixic acid (NA), which is an old member of synthetic quinolone antibacterials, caused DNA damage specifically at 5'-GG-3' sequences, whereas lomefloxacin (LFLX) did not exhibit the site preference for consecutive guanines. LFLX-induced DNA photodamage was inhibited by sodium azide and enhanced in D2O, suggesting that singlet oxygen plays the key role in the DNA damage. LFLX plus UVA induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) depending on LFLX concentrations, and 8-oxodG formation was enhanced in single-stranded DNA. In contrast, NA induced larger amounts of 8-oxodG in double-stranded DNA. ESR spin destruction method revealed that NA induced DNA photodamage through electron transfer but LFLX did not. These findings indicate that DNA damage induced by photoactivated LFLX and NA plays an important role in expression of their photocarcinogenicity.  相似文献   

18.
Phthalocyanine mediated photosensitization of 2'-deoxyguanosine (dG) in oxygen saturated aqueous solution has previously been shown to result in the addition of molecular oxygen to the guanine base generating the 4R* and 4S* diastereoisomers of 4,8-dihydro-4-hydroxy-8-oxo-2'-deoxyguanosine (dO) (the asterisk denotes unambiguous assignment of the 4R and 4S diastereoisomers). The data presented here show that the same guanine modified bases are generated in a 1:1 ratio when thymidylyl-(3',5')-2'-deoxyguanosine (d(TpG)) is similarly photo-oxidized. These modified dinucleoside monophosphates, labelled d(TpO)-A and -B, have been isolated by high performance liquid chromatography and characterized by proton NMR spectrometry, fast atom bombardment mass spectrometry, and enzymatic digestions. Photosensitization in D2O instead of H2O leads to an increase in the rate of d(TpO) formation that is consistent with a type II (singlet oxygen) reaction mechanism. Three interesting properties of these modified dinucleoside monophosphates are: i) the rate of their digestion with spleen phosphodiesterase is greatly reduced relative to d(TpG), ii) they are not digested by snake venom phosphodiesterase, and iii) they are stable to 1.0 M piperidine at 90 degrees C for 30 min. The latter observation indicates that 4,8-dihydro-4-hydroxy-8-oxoguanine is not a base lesion responsible for the strand breaks observed following hot piperidine treatment of DNA exposed to type II photosensitizers or chemically generated singlet oxygen.  相似文献   

19.
Superoxide dismutases (SODs) are involved in the protection of cells from oxygen toxicity. However, several papers have reported that the overexpression of CuZn-SOD causes oxidative damage to cells. We investigated a mechanism by which an excess of SODs accelerates oxidative stress. The presence of CuZn-SOD, Mn-SOD or Mn(II) enhanced the frequency of DNA damage induced by hydrogen peroxide (H2O2) and Cu(II), and altered the site specificity of the latter: H2O2 induced Cu(II)-dependent DNA damage with high frequency at the 5'-guanine of poly G sequences; when SODs were added, the frequency of cleavages at thymine and cytosine residues increased. SODs also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by H2O2 and Cu(II). We conclude that SODs may increase carcinogenic risks, e.g. of tumors in Down syndrome.  相似文献   

20.
"Comet assay" showed light activated (3.15 Jcm-2 over 30 min) phenothiazinium based photosensitisers (PhBPs) to induce photo-damage of Staphylococcus aureus DNA, as indicated by DNA "tails" between 80 and 120 microm. In general, PhBPs exhibited significant singlet oxygen yields (Phi(DeltaPhBP)>0.7), suggesting the use of type II mechanisms of photo-oxidation. However, the photodynamic action of PhBPs on DNA showed generally insignificant production of 7,8-dihydro-8-oxo-2'-deoxyguanosine, normally a major product of type II DNA photo-oxidation. These combined results show DNA to be a major site of action of PhBPs and suggest that this action may involve type II attack on a nucleoside(s) other than guanosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号