首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different angiogenic assays in vitro have helped to define various events underlying angiogenesis. In this report we have compared the phenotypic modifications of human umbilical vein endothelial cells (HUVE cells) and human dermal fibroblasts using Matrigel and collagen gels. Both HUVE cells and human dermal fibroblasts form a network of anastomosing cords that apparently resemble blood capillaries when grown on Matrigel. The whole network was formed by several cellular aggregates joined to each other by cellular cords. Lumen formation was not observed in this angiogenic system. In opposite, considerable differences between HUVE cells and human dermal fibroblasts were observed in the three-dimensional angiogenic assay on collagen gels described by Montesano et al [14]. These results indicate that data obtained with angiogenic systems using Matrigel must be interpreted with caution and that the assay described by Montesano et al [14], is more reliable to describe angiogenesis.  相似文献   

2.
During the process of angiogenesis, the normally quiescent endothelial cells that line the vasculature are induced to proliferate, migrate and align to form new blood vessels by angiogenic stimuli. Assays for angiogenic factors mostly involve in vivo approaches. The two most commonly used in vivo assays—the chick chorioallantoic membrane (CAM) assay and the rabbit corneal assay are tedious to perform and are technically demanding. Several in vitro assays have also been developed, based on the ability of endothelial cells to form tubes in 3-D matrices. Here, we describe the modification of a microcarrier bead-based assay. This assay combines cells grown on Cytodex-3 microcarrier beads with Matrigel to provide an easy, rapid, and reliable method for evaluating and measuring angiogenic activity. We also describe the differential behavior of normal and transformed endothelial cells cultured in Matrigel.  相似文献   

3.
Monocyte-derived macrophages are important sources of angiogenic factors in cancer and other disease states. Upon extravasation from vasculature, monocytes encounter the extracellular matrix. We hypothesized that interaction with extracellular matrix proteins leads monocytes to adopt an angiogenic phenotype. We performed endothelial cell chemotaxis assays on conditioned medium (CM) from monocytes that had been cultured in vitro on various matrix substrates (collagen I, laminin, Matrigel, fibronectin), in the presence of autologous serum, or on tissue culture plastic alone. Monocytes cultured on Matrigel and on fibronectin were the most potent inducers of angiogenic activity compared with tissue culture plastic or autologous serum-differentiated monocytes. This increased angiogenic activity was associated with increased expression of angiogenic CXC chemokines (IL-8, epithelial neutrophil-activating peptide-78, growth-related oncogene alpha, and growth-related oncogene gamma) but not of vascular endothelial growth factor. Additionally, CM from monocytes cultured on fibronectin-depleted Matrigel (MG(FN-)) induced significantly less angiogenic activity than CM from monocytes cultured on control-depleted Matrigel. ELISA analysis of CM from monocytes cultured on MG(FN-) revealed a significant decrease in GRO-alpha and GRO-gamma compared with CM from monocytes cultured on MG. Incubation of monocytes before adherence on fibronectin with PHSCN (a competitive peptide inhibitor of the PHSRN sequence of fibronectin binding via alpha(5)beta(1) integrin) results in diminished expression of angiogenic activity and CXC chemokines compared with control peptide. These data suggest that fibronectin, via alpha(5)beta(1) integrin, promotes CXC chemokine-dependent angiogenic activity from monocytes.  相似文献   

4.
5.
The angiogenic activity of CXC-ELR(+) chemokines, including CXCL8/IL-8, CXCL1/macrophage inflammatory protein-2 (MIP-2), and CXCL1/growth-related oncogene-alpha in the Matrigel sponge angiogenesis assay in vivo, is strictly neutrophil dependent, as neutrophil depletion of the animals completely abrogates the angiogenic response. In this study, we demonstrate that mice deficient in the src family kinases, Hck and Fgr (hck(-/-)fgr(-/-)), are unable to develop an angiogenic response to CXCL1/MIP-2, although they respond normally to vascular endothelial growth factor-A (VEGF-A). Histological examination of the CXCL1/MIP-2-containing Matrigel implants isolated from wild-type or hck(-/-)fgr(-/-) mice showed the presence of an extensive neutrophil infiltrate, excluding a defective neutrophil recruitment into the Matrigel sponges. Accordingly, neutrophils from hck(-/-)fgr(-/-) mice normally migrated and released gelatinase B in response to CXCL1/MIP-2 in vitro, similarly to wild-type neutrophils. However, unlike wild-type neutrophils, those from hck(-/-)fgr(-/-) mice were completely unable to release VEGF-A upon stimulation with CXCL1/MIP-2. Furthermore, neutralizing anti-VEGF-A Abs abrogated the angiogenic response to CXCL1/MIP-2 in wild-type mice and CXCL1/MIP-2 induced angiogenesis in the chick embryo chorioallantoic membrane assay, indicating that neutrophil-derived VEGF-A is a major mediator of CXCL1/MIP-2-induced angiogenesis. Finally, in vitro kinase assays confirmed that CXCL1/MIP-2 activates Hck and Fgr in murine neutrophils. Taken together, these data demonstrate that CXCL1/MIP-2 leads to recruitment of neutrophils that, in turn, release biologically active VEGF-A, resulting in angiogenesis in vivo. Our observations delineate a novel mechanism by which CXCL1/MIP-2 induces neutrophil-dependent angiogenesis in vivo.  相似文献   

6.
7.
α-Tocopheryl succinate (TS) is a tocopherol derivative and has multifaceted anti-cancer effects; TS not only causes cancer cell-specific apoptosis but also inhibits tumor angiogenesis. Although TS has the potential to be used as a well-tolerated anti-angiogenic drug, it is still unclear which step of the angiogenic process is inhibited by TS. Here, we show that TS inhibits the expression of angiopoietin (Ang)-2, which induces destabilization of vascular structure in the initial steps of the angiogenic process. In mouse melanoma cells, TS treatment decreased mRNA and extracellular protein levels of Ang-2; however, the mRNA level of Ang-1, which stabilizes the vascular structure, remained unchanged. Furthermore, aorta ring and Matrigel plug angiogenesis assays indicated that the conditioned medium from TS-treated cells (CM-TS) inhibited neovascularization and blood leakage from the existing blood vessels, respectively. Following immunohistochemical staining of the vessels treated with CM-TS, imaging studies showed that the vascular endothelial cells were highly packed with pericytes. In conclusion, we found that TS inhibits Ang-2 expression and, consequently, stabilizes the vascular structure during the initial step of tumor angiogenesis.  相似文献   

8.
Evidence of IL-18 as a novel angiogenic mediator   总被引:21,自引:0,他引:21  
Angiogenesis, or new blood vessel growth, is a key process in the development of synovial inflammation in rheumatoid arthritis (RA). Integral to this pathologic proliferation are proinflammatory cytokines. We hypothesized a role for IL-18 as an angiogenic mediator in RA. We examined the effect of human IL-18 on human microvascular endothelial cell (HMVEC) migration. IL-18 induced HMVEC migration at 1 nM (p < 0.05). RA synovial fluids potently induced endothelial cell migration, but IL-18 immunodepletion resulted in a 68 +/- 5% decrease in HMVEC migration (p < 0.05). IL-18 appears to act on HMVECs via alpha(v)beta(3) integrin. To test whether IL-18 induced endothelial cell tube formation in vitro, we quantitated the degree of tube formation on Matrigel matrix. IL-18, 1 or 10 nM, resulted in a 77% or 87% increase in tube formation compared with control (p < 0.05). To determine whether IL-18 may be angiogenic in vivo, we implanted IL-18 in Matrigel plugs in mice, and IL-18 at 1 and 10 nM induced angiogenesis (p < 0.05). The angiogenesis observed appears to be independent of the contribution of local TNF-alpha, as evidenced by adding neutralizing anti-TNF-alpha Ab to the Matrigel plugs. In an alternative in vivo model, sponges embedded with IL-18 or control were implanted into mice. IL-18 (10 nM) induced a 4-fold increase in angiogenesis vs the control (p < 0.05). These findings support a novel function for IL-18 as an angiogenic factor in RA and may elucidate a potential therapeutic target for angiogenesis-directed diseases.  相似文献   

9.
Endothelial cell-selective adhesion molecule (ESAM) is a member of the immunoglobulin receptor family that mediates homophilic interactions between endothelial cells. To address potential in vivo angiogenic functions of this molecule, mice lacking ESAM (ESAM-/-) were generated by gene-targeted deletion. ESAM-/- mice did not show overt morphological defects in the vasculature. To evaluate the role of ESAM in pathological angiogenesis, wild type (WT) and ESAM-/- mice were injected with melanoma and Lewis lung carcinoma cells. By 14 days after injection, tumor volumes of B16F10 and LL/2 in ESAM-/- mice were 48 and 37% smaller, respectively, compared with WT mice. Vascular density of the tumors, as determined by CD31 staining, was also decreased in the ESAM null animals. Matrigel plug assays showed less neovascularization in ESAM-/- mice than in WT mice. ESAM-/- endothelial cells exhibited less in vitro tube formation and decreased migration in response to basic fibroblast growth factor when compared with WT cells, and endothelial-like yolk sac cells engineered to overexpress ESAM showed accelerated tube formation in vitro. These in vitro and in vivo studies suggest that ESAM has a redundant functional role in physiological angiogenesis but serves a unique and essential role in pathological angiogenic processes such as tumor growth.  相似文献   

10.
Angiogenesis has been investigated in vivo using subcutaneously injected reconstituted basement membrane (Matrigel) supplemented with angiogenic factors. Previously we found that the laminin-derived synthetic peptide containing SIKVAV (ser-ile-lys-val-ala-val) promoted angiogenesis in vivo. In parallel studies, it was observed that new vessel formation in response to this peptide occurred several days after basic fibroblast growth factor-induced angiogenesis. Since this delay suggested that SIKVAV-induced angiogenesis may be secondary to other events, we investigated here earlier time points to determine if both indirect and direct mechanisms of angiogenesis are involved. We found that neutrophils are continuously recruited to the SIKVAV-containing plugs between 4 hours to 3 days following the initial injection. By day 7, columns of endothelial cells begin to migrate into the plug and form small blood vessels. In contrast, neutropenic mice had a 62% reduction in SIKVAV-induced angiogenesis when compared to control mice. Freshly isolated neutrophils also degraded laminin, the major component of the basement membrane Matrigel. These cells also produced factors in response to SIKVAV peptide which induced proliferation of human umbilical vein endothelial cells relative to a control peptide. In vitro experiments utilizing human neutrophils demonstrated that these cells migrate to the SIKVAV peptide and possess a specific cell surface SIKVAV binding protein of ~56 kD. These data suggest that neutrophils are induced to migrate to the Matrigel plugs, at least in part, by SIKVAV peptide, where they may release their own angiogenic factors and degrade the matrix, thus physically facilitating cell migration and liberating additional angiogenic matrix fragments and/or cytokines. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America
  •   相似文献   

    11.
    A new role for the anti-apoptotic gene A20 in angiogenesis   总被引:2,自引:0,他引:2  
    A20 is a negative regulator of NF-kappaB activation and thus a potential therapeutic tool for the treatment of diseases where apoptosis and/or inflammatory responses are part of the pathogenic process. Thus, A20 has been shown to improve the long-term outcome of organ transplantation, particularly, the transplantation of islets of Langerhans which may aid the cure of type I diabetes. We now report a new role for A20 in regulating neovascularisation. We used RNA interference to inhibit A20 expression in primary human umbilical vein endothelial cells (HUVECs) and investigated the effect on tubule formation in two in vitro angiogenesis assays, Matrigel and a co-culture assay. Tubule area and tubule length were both reduced following inhibition of A20 expression in HUVECs. These inhibitory effects were particularly evident in the co-culture assay, which incorporates the critical steps of the angiogenic process and ultimately results in the formation of an intricate network of anastomosing tubules that resemble the formed capillary bed: a partial down-regulation of A20 protein (50-60%) resulted in a 28% reduction in tubule area (P < 0.05) and a 26% reduction in tubule length (P < 0.05). A20 may offer a new target in the treatment of human conditions, including cancer, which are characterised by neovascularisation.  相似文献   

    12.
    MAGE-D1 is a member of the MAGE family of proteins, and functions as an adaptor that mediates multiple signaling pathways. The current study for the first time provides evidence for a role of MAGE-D1 in the negative regulation of angiogenic activity in vitro and in vivo models. Our findings showed that MAGE-D1 over-expression significantly suppressed the angiogenic key events such as endothelial cell migration and invasion, adhesion on collagen I substrate, and in vitro differentiation into tube-like structures under both normoxic and hypoxic conditions. MAGE-D1 over-expression also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. With further experiments, we revealed that MAGE-D1 over-expression disrupted actin cytoskeleton organization and lamellipodia formation, and down-regulated HIF-1-dependent gene expression in endothelial cells under hypoxic conditions. These findings demonstrate a new function of MAGE-D1 in the regulation of angiogenesis and provide new insight into the ability of MAGE-D1 to suppress the growth and angiogenic response of endothelial cells by interfering with HIF-1-dependent gene expression, and actin cytoskeleton reorganization, suggesting that MAGE-D1 might be a novel inhibitor of angiogenesis in vitro and in vivo.  相似文献   

    13.
    Angiogenesis is a complex multi-step process, where in response to angiogenic stimuli, new vessels are created from the existing vasculature. These steps include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, lumen formation, anastomosis, and formation of a new basement membrane. Many in vitro assays have been developed to study this process, but most only mimic certain stages of angiogenesis, and morphologically the vessels often do not resemble vessels in vivo. Here we demonstrate an optimized in vitro angiogenesis assay that utilizes human umbilical vein EC and fibroblasts. This model recapitulates all of the key early stages of angiogenesis, and importantly the vessels display patent intercellular lumens surrounded by polarized EC. Vessels can be easily observed by phase-contrast and time-lapse microscopy, and recovered in pure form for downstream applications.  相似文献   

    14.
    Angiogenesis is a complex multi-step process, where, in response to angiogenic stimuli, new vessels are created from the existing vasculature. These steps include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, branching, lumen formation, anastomosis, and formation of a new basement membrane. Many in vitro assays have been developed to study this process, but most only mimic certain stages of angiogenesis, and morphologically the vessels within the assays often do not resemble vessels in vivo. Based on earlier work by Nehls and Drenckhahn, we have optimized an in vitro angiogenesis assay that utilizes human umbilical vein EC and fibroblasts. This model recapitulates all of the key early stages of angiogenesis and, importantly, the vessels display patent intercellular lumens surrounded by polarized EC. EC are coated onto cytodex microcarriers and embedded into a fibrin gel. Fibroblasts are layered on top of the gel where they provide necessary soluble factors that promote EC sprouting from the surface of the beads. After several days, numerous vessels are present that can easily be observed under phase-contrast and time-lapse microscopy. This video demonstrates the key steps in setting up these cultures.  相似文献   

    15.
    Adiponectin is an adipocyte-specific adipocytokine with anti-atherogenic and anti-diabetic properties. Here, we investigated whether adiponectin regulates angiogenic processes in vitro and in vivo. Adiponectin stimulated the differentiation of human umbilical vein endothelium cells (HUVECs) into capillary-like structures in vitro and functioned as a chemoattractant in migration assays. Adiponectin promoted the phosphorylation of AMP-activated protein kinase (AMPK), protein kinase Akt/protein kinase B, and endothelial nitric oxide synthesis (eNOS) in HUVECs. Transduction with either dominant-negative AMPK or dominant-negative Akt abolished adiponectin-induced eNOS phosphorylation as well as adiponectin-stimulated HUVEC migration and differentiation. Dominant-negative AMPK also inhibited adiponectin-induced Akt phosphorylation, suggesting that AMPK is upstream of Akt. Dominant-negative Akt or the phosphatidylinositol 3-kinase inhibitor LY294002 blocked adiponectin-stimulated Akt and eNOS phosphorylation, migration, and differentiation without altering AMPK phosphorylation. Finally, adiponectin stimulated blood vessel growth in vivo in mouse Matrigel plug implantation and rabbit corneal models of angiogenesis. These data indicate that adiponectin can function to stimulate the new blood vessel growth by promoting cross-talk between AMP-activated protein kinase and Akt signaling within endothelial cells.  相似文献   

    16.
    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also found that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.  相似文献   

    17.
    The ditriazine derivative DTD (4,10-dichloropyrido[5,6:4,5]thieno[3,2-d':3,2-d]-1,2,3-ditriazine) has been previously reported to reduce the degree of granulomatous inflammation and vascular density in a murine air pouch granuloma model. The aim of this study was to test whether DTD affects angiogenesis. Our results show that DTD inhibits in vivo angiogenesis in the chorioallantoic membrane (CAM) assay at doses equal or lower than 0.3 nmol/egg. Different in vitro assays were used to study the potential effects of this compound on key steps of angiogenesis, namely, a colorimetric assay of cell proliferation/viability, a morphogenesis on Matrigel assay, zymographic assays for gelatinases and nuclear morphology and cell cycle analysis for apoptosis induction. Our data indicate that DTD inhibits proliferation but does not induce apoptosis in endothelial cells in vitro. DTD suppresses the endothelial capillary-like chord formation at concentrations lower than those required to inhibit proliferation. DTD treatment inhibits the matrix metalloproteinase-2 production in endothelial and fibrosarcoma cells, but does not affect the cyclooxygenase-2 expression in endothelial cells, as assessed by western blot analysis. Taken together, results here presented indicate that DTD exhibits an anti-angiogenic activity that is independent of inflammatory processes and make it a promising drug for further evaluation in the treatment of angiogenesis-related pathologies.  相似文献   

    18.
    19.
    ECV304, a spontaneously transformed cell line derived from the human umbilical vein endothelial cell (HUVEC) (Takahashi et al., 1990), has been developed as an in vitro angiogenesis model. In the present study, we further characterized the angiogenic properties of this cell line. Compared to HUVEC, ECV304 cells showed distinct features including a higher activity of cellular adhesion, slower but reproducible progression of angiogenesis on Matrigel, and resistance to apoptosis. Thus, the expression of integrin and activation of extracellular-signal regulated kinase 1/2 (Erk1/2), a downstream effector of the integrin pathway, were examined. Flow cytometry revealed that alpha3beta1 integrin was markedly upregulated in ECV304 cells, while alpha(v)beta1 and alpha5beta1 integrins were slightly downregulated. Consistent with this, the binding activity to collagen type IV and laminin, major extracellular matrices of Matrigel, was increased 1.4- and 1.9-fold in ECV304 cells, respectively. This tight binding may retard the initial stage of sprouting and migration in the angiogenesis of ECV304 cells. It has been further demonstrated that Erk1/2 is constitutively active in ECV304 cells, rendering them resistent to the inhibitory effect of PD98059 on proliferation. However, migration of both HUVEC and ECV304 cells was inhibited to a similar extent by PD98059 in a dose-dependent manner. Up to 50 microM of PD98059, no significant changes in cell binding and tubulogenesis on Matrigel was observed in ECV304 cells. In contrast, the tubulogenesis of HUVEC was severely impaired by PD98059. Elevated Erk1/2 activity in ECV304 cells was suppressed by dominant negative H-Ras, but not by cytochalasin D. These results suggest that the overexpression of alpha3beta1 integrin and the constitutive activation of Erk1/2 play a key role in the alteration of the angiogenic properties of ECV304 cells.  相似文献   

    20.
    The ability of neoplastic cells to recruit blood vasculature is crucial to their survival in the host organism. However, the evidence linking dominant oncogenes to the angiogenic switch remains incomplete. We demonstrate here that Myc, an oncoprotein implicated in many human malignancies, stimulates neovascularization. As an experimental model, we used Rat-1A fibroblasts that form vascular tumors upon transformation by Myc in immunocompromised mice. Our previous work and the use of neutralizing antibodies reveal that in these cells, the angiogenic switch is achieved via down-modulation of thrombospondin-1, a secreted inhibitor of angiogenesis, whereas the levels of vascular endothelial growth factor, a major activator of angiogenesis, remain high and unaffected by Myc. Consistent with this finding, overexpression of Myc confers upon the conditioned media the ability to promote migration of adjacent endothelial cells in vitro and corneal neovascularization in vivo. Furthermore, mobilization of estrogen-dependent Myc in vivo with the appropriate steroid provokes neovascularization of cell implants embedded in Matrigel. These data suggest that Myc is fully competent to trigger the angiogenic switch in vivo and that secondary events may not be required for neovascularization of Myc-induced tumors.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号