首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

2.
Identifying the factors generating ecomorphological diversity within species can provide a window into the nascent stages of ecological radiation. Sexual dimorphism is an obvious axis of intraspecific morphological diversity that could affect how environmental variation leads to ecological divergence among populations. In this paper we test for sex‐specific responses in how environmental variation generates phenotypic diversity within species, using the generalist lizard Gallotia galloti on Tenerife (Canary Islands). We evaluate two hypotheses: the first proposes that different environments have different phenotypic optima, leading to shifts in the positions of populations in morphospace between environments; the second posits that the strength of trait‐filtering differs between environments, predicting changes in the volume of morphospace occupied by populations in different environments. We found that intraspecific morphological diversity, provided it is adaptive, arises from both shifts in populations’ position in morphospace and differences in the strength of environmental filtering among environments, especially at high elevations. However, effects were found only in males; morphological diversity of females responded little to environmental variation. These results within G. galloti suggest natural selection is not the sole source of phenotypic diversity across environments, but rather that variation in the strength of, or response to, sexual selection may play an important role in generating morphological diversity in environmentally diverse settings. More generally, disparities in trait–environment relationships among males and females also suggest that ignoring sex differences in studies of trait dispersion and clustering may produce misleading inferences.  相似文献   

3.
Predation risk is one of the major forces affecting phenotypic variation among and within animal populations. While fixed anti-predator morphologies are favoured when predation level is consistently high, plastic morphological responses are advantageous when predation risk is changing temporarily, spatially, or qualitatively. Three-spined sticklebacks (Gasterosteus aculeatus) are well known for their substantial variability in morphology, including defensive traits. Part of this variation might be due to phenotypic plasticity. However, little is known about sticklebacks’ plastic ability to react morphologically to changing risks of predation and about the proximate cues involved. Using a split-clutch design we show that odour of a predatory fish induces morphological changes in sticklebacks. Under predation risk, i.e., when exposed to odour of a predator, fish grew faster and developed a different morphology, compared to fish reared under low predation risk, i.e., exposed to odour of a non-predatory fish, or in a fish-free environment. However, fast growing comes at cost of increased body asymmetries suggesting developmental constraints. The results indicate that sticklebacks are able to distinguish between predatory and non-predatory fishes by olfactory cues alone. As fishes were fed on invertebrates, this reaction was not induced by chemical cues of digested conspecifics, but rather by predator cues themselves. Further, the results show that variation in body morphology in sticklebacks has not only a strong genetical component, but is also based on plastic responses to different environments, in our case different predation pressures, thus opening new questions for this model species in ecology and evolution.  相似文献   

4.
The relationship between seasonal variation and the effect of several different environmental factors on chromophore composition was investigated in the eye of the Japanese dace, Tribolodon hakonensis which lives either in rivers or in the sea. Eyes obtained from river and sea populations had both retinal (A1) and 3,4-didehydroretinal (A2) all through the year but the ratio of these chromophores showed seasonal variation the relative amount of A2 was higher in winter and lower in summer. Besides seasonal variation, A2 showed marked differences depending on habitat: the highest proportion of A2 was 67% in January and the lowest 13% in July, in the river population, whereas in the sea population the highest and the lowest values were only 30 and 6%, respectively, during the same months. The seasonal variation in gonadosomatic index showed no correlation to variations in A2 proportion, and the maximum difference in water temperature between summer and winter was ca. 15°C for both habitats. Because spectral conditions at the locations of capture of both river and sea populations were similar, we conclude that Japanese dace eyes are affected by exogenous factors related to differences between freshwater and seawater environments.  相似文献   

5.
Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator‐induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high‐ and low‐predation environments. We reared full‐siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high‐predation ecotype. However, when reared in the absence of predator cues, guppies from high‐ and low‐predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high‐ versus low‐predation environments. Thus, divergence in plasticity is due to phenotypic differences between high‐ and low‐predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by‐product of adaptation to the derived environment.  相似文献   

6.
Chamaerops humilis is decreasing in abundance in Mediterranean Europe, which has induced the European community to call for its protection in Special Areas of Conservation. However, information about its genetic and morphological variability, which is crucial to the development of any conservation strategies, is insufficient. The present study aimed to investigate the genetic and morphological variability of C. humilis in Sicily, which was selected as a model because of the high number of dense populations. The relationships between morphological traits and climatic variables were studied to highlight patterns of adaptation to the environment, along with the genetic similarity among the populations. Ten natural populations were sampled, analyzed using 28 specifically designed SSR primers, and evaluated based on 29 morphological traits. The populations were clustered similarly based on genetic and morphological traits. Heterozygosity was high and inbreeding coefficients were low. These results, along with higher intra‐ than inter‐population differentiation, suggest that C. humilis populations in Sicily differentiated from a common ancestor and that inter‐population variation arose from secondary evolution processes induced by ecological adaptation. The correlations between climatic variables and morphological traits suggest that the morphological adaptation to arid environments depends more on summer temperatures than on evapotranspiration or rainfall and that autumn and winter temperatures are determinants of the species establishment at new sites. Considering the response of C. humilis to seasonal temperatures, the present results indicate this species as a candidate for tracking climatic changes in Europe. Further studies are needed to highlight the adaptation of C. humilis to cold environments. Palaeo‐climatological and ‐ecological studies could help clarify its strategies for the colonization of new sites. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 66–81.  相似文献   

7.
Gill bacterial communities of Chama pacifica, an Indo-Pacific invasive oyster to the eastern Mediterranean Sea, were compared with those of Chama savignyi, its northern Red Sea congeneric species. Summer and winter bacterial populations were characterized and compared using 16S rDNA clone libraries, and seasonal population dynamics were monitored by automated ribosomal intergenic spacer analysis (ARISA). Clone libraries revealed a specific clade of bacteria, closely related to marine endosymbionts from the Indo-Pacific, found in both ecosystems, of which one taxon was conserved in oysters from both sites. This taxon was dominant in summer libraries and was weakly present in winter ones, where other members of this group were dominant. ARISA results revealed significant seasonal variation in bacterial populations of Mediterranean Sea oysters, as opposed to Red Sea ones that were stable throughout the year. We suggest that this conserved association between bacteria and oyster reflects either a symbiosis between the oyster host and some of its bacteria, a co-invasion of both parties, or both.  相似文献   

8.
Local genetic adaptation and phenotypic plasticity are two mechanisms that can have marked effects on the morphology, performance, and behaviour of animals, producing geographic variation among populations. However, few studies have examined how these mechanisms interact during ontogeny to shape organismal phenotypes. We incubated eggs of the western fence lizard, Sceloporus occidentalis, from four populations (representing two latitudes and altitudes) in either a warm or cool environment in the laboratory. We then raised the hatchlings under common laboratory conditions, measured morphological and performance traits until 5 weeks of age, and compared juvenile morphology with that of field‐caught adults from each population. The results obtained indicate that some phenotypic traits that contribute to performance (body size, hindlimb length, head shape) were relatively canalized in juveniles and differed among populations in a way that was consistent with adults from their population of origin. However, other traits (forelimb length, inter‐limb length, mass, tail length), showed significant effects of incubation temperature, and this environmentally induced variation persisted throughout the experiment. Although selection pressure may be stronger for traits that are integral to survival, developmental effects might still have a lasting impact on traits less important to organismal fitness. We discuss the results obtained in the present study the context of the life history of these animals. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 84–98.  相似文献   

9.
SUMMARY Natural selection requires genetically based phenotypic variation to facilitate its action and cause adaptive evolution. It has become increasingly recognized that morphological development can become canalized likely as a result of selection. However, it is largely unknown how selection may influence canalization over ontogeny and differing environments. Changes in environments or colonization of a novel one is expected to result in adaptive divergence from the ancestral population when selection favors a new phenotypic optimum. In turn, a novel environment may also expose variation previously hidden from natural selection. We tested for changes in phenotypic variation over ontogeny and environments among ecomorphs of Arctic charr (Salvelinus alpinus) from two Icelandic lakes. Populations represented varying degrees of ecological specialization, with one lake population possessing highly specialized ecomorphs exhibiting a large degree of phenotypic divergence, whereas the other displayed more subtle divergence with more ecological overlap. Here we show that ecomorphs hypothesized to be the most specialized in each lake possess significant reductions in shape variation over ontogeny regardless of environmental treatment suggesting canalized development. However, environments did change the amount of shape variation expressed in these ecomorphs, with novel environments slowing the rate at which variation was reduced over ontogeny. Thus, environmental conditions may play an important role in determining the type and amount of genetically based phenotypic variation exposed to natural selection.  相似文献   

10.
Parallel phenotypic evolution occurs when independent populations evolve similar traits in response to similar selective regimes. However, populations inhabiting similar environments also frequently show some phenotypic differences that result from non‐parallel evolution. In this study, we quantified the relative importance of parallel evolution to similar foraging regimes and non‐parallel lake‐specific effects on morphological variation in European whitefish (Coregonus lavaretus). We found evidence for both lake‐specific morphological characteristics and parallel morphological divergence between whitefish specializing in feeding on profundal and littoral resources in three separate lakes. Foraging specialists expressed similar phenotypes in different lakes in both overall body shape and selected measured morphological traits. The morphology of the two whitefish specialists resembled that predicted from other fish species, supporting the conclusion of an adaptive significance of the observed morphological characteristics. Our results indicate that divergent natural selection resulting from foraging specialization is driving and/or maintaining the observed parallel morphological divergence. Whitefish in this study may represent an early stage of divergence towards the evolution of specialized morphs.  相似文献   

11.
Inducible defenses are important in the life strategies of many taxa. In some species of marine gastropods, water-borne chemical cues from potential predators induce defensive changes in shell form and differences in growth rate. We examined such phenotypic plasticity in the direct-developing snail, Littorina subrotundata (Carpenter, 1864). Among experimental field populations of L. subrotundata exposed to differing intensities of predation by the purple shore crab, Hemigrapsus nudus (Dana, 1851), snails collected from predation-intense environments often had more massive shells than closely related snails from adjacent environments where predation was negligible. Snails collected from both environments were raised in tanks containing cages of H. nudus that were feeding on conspecific snails and compared to a control group raised in the absence of this stimulus. Most snails developed significantly more massive shells in the presence of the crabs suggesting that adaptive phenotypic plasticity may account for some of the variation we observed in the field. In one case, snails from a predation-intense environment did not exhibit a statistically significant amount of plasticity, but instead grew a more massive shell irrespective of the laboratory stimulus. We interpret this as evidence for a genetic difference in the plasticity of shell form among experimental populations, caused by intense selection by H. nudus. There was no statistical difference in the growth rates of snails among treatments.  相似文献   

12.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

13.
Genetic adaptation and phenotypic plasticity are two ways in which organisms can adapt to local environmental conditions. We examined genetic and plastic variation in gill and brain size among swamp (low oxygen; hypoxic) and river (normal oxygen; normoxic) populations of an African cichlid fish, Pseudocrenilabrus multicolor victoriae. Larger gills and smaller brains should be advantageous when oxygen is low, and we hypothesized that the relative contribution of local genetic adaptation vs. phenotypic plasticity should be related to potential for dispersal between environments (because of gene flow’s constraint on local genetic adaptation). We conducted a laboratory‐rearing experiment, with broods from multiple populations raised under high‐oxygen and low‐oxygen conditions. We found that most of the variation in gill size was because of plasticity. However, both plastic and genetic effects on brain mass were detected, as were genetic effects on brain mass plasticity. F1 offspring from populations with the highest potential for dispersal between environments had characteristically smaller and more plastic brains. This phenotypic pattern might be adaptive in the face of gene flow, if smaller brains and increased plasticity confer higher average fitness across environment types.  相似文献   

14.
Heterogeneous forces of selection associated with fluctuating environments are recognized as important factors involved in the maintenance of inter‐individual phenotypic variance within populations. Consistent behavioural differences over time and across situations (e.g. personality) are increasingly cited as examples of individual variation observed within populations. However, the suggestion that heterogeneous selective pressures target different animal personalities remains largely untested in the wild. In this 5‐year study, we investigated the dynamics of viability selection on a personality trait, exploration, in a population of eastern chipmunks (Tamias striatus) experiencing substantial seasonal variations in weather conditions and food availability associated with masting trees. Contrary to our expectations, we found no evidence of fluctuating selection on exploration. Instead, we found strong disruptive viability selection on adult exploration behaviour, independent of seasonal variations. Individuals with either low or high exploration scores were almost twice as likely to survive over a 6‐month period compared with individuals with intermediate scores. We found no evidence of viability selection on juvenile exploration. Our results highlight that disruptive selection might play an important role in the maintenance of phenotypic variance of wild populations through its effect on different personality types across temporally varying environmental conditions.  相似文献   

15.
Gene flow between phenotypically divergent populations can disrupt local adaptation or, alternatively, may stimulate adaptive evolution by increasing genetic variation. We capitalised on historical Trinidadian guppy transplant experiments to test the phenotypic effects of increased gene flow caused by replicated introductions of adaptively divergent guppies, which were translocated from high‐ to low‐predation environments. We sampled two native populations prior to the onset of gene flow, six historic introduction sites, introduction sources and multiple downstream points in each basin. Extensive gene flow from introductions occurred in all streams, yet adaptive phenotypic divergence across a gradient in predation level was maintained. Descendants of guppies from a high‐predation source site showed high phenotypic similarity with native low‐predation guppies in as few as ~12 generations after gene flow, likely through a combination of adaptive evolution and phenotypic plasticity. Our results demonstrate that locally adapted phenotypes can be maintained despite extensive gene flow from divergent populations.  相似文献   

16.
Variation in somatic growth rates is of great interest to biologists because of the relationship between growth and other fitness‐determining traits, and it results from both genetic and environmentally induced variation (i.e. plasticity). Theoretical predictions suggest that mean somatic growth rates and the shape of the reaction norm for growth can be influenced by variation in predator‐induced mortality rates. Few studies have focused on variation in reaction norms for growth in response to resource availability between high‐predation and low‐predation environments. We used juvenile Brachyrhaphis rhabdophora from high‐predation and low‐predation environments to test for variation in mean growth rates and for variation in reaction norms for growth at two levels of food availability in a common‐environment experiment. To test for variation in growth rates in the field, we compared somatic growth rates in juveniles in high‐predation and low‐predation environments. In the common‐environment experiment, mean growth rates did not differ between fish from differing predation environments, but the interaction between predation environment and food level took the form of a crossing reaction norm for both growth in length and mass. Fish from low‐predation environments exhibited no significant difference in growth rate between high and low food treatments. In contrast, fish from high‐predation environments exhibited variation in growth rates between high and low food treatments, with higher food availability resulting in higher growth rates. In the field, individuals in the high‐predation environment grow at a faster rate than those in low‐predation environments at the smallest sizes (comparable to sizes in the common‐environment experiment). These data provide no evidence for evolved differences in mean growth rates between predation environments. However, fish from high‐predation environments exhibited greater plasticity in growth rates in response to resource availability suggesting that predation environments may exhibit increased variation in food availability for prey fish and consequent selection for plasticity.  相似文献   

17.
Mark C. Urban 《Oikos》2010,119(4):646-658
Spatial heterogeneity in the selection imposed by different predator species could promote the adaptive diversification of local prey populations. However, high gene flow might swamp local adaptations at limited spatial scales or generalized phenotypic plasticity might evolve in place of local diversification. Spotted salamander larvae Ambystoma maculatum face strongly varying risks from gape‐limited marbled salamander larvae Ambystoma opacum and gape‐unconstrained diving beetle larvae Dytiscus spp. across natural landscapes. To evaluate if A. maculatum adapts to these predation risk across micro‐geographic scales, I measured selection gradients in response to the two focal predators and then assayed the defensive morphologies of ten populations in a common garden experiment. I found that A. opacum induced selection on A. maculatum for larger tailfins and bodies whereas beetles induced selection for larger tail muscles and smaller bodies. In accordance with the local adaptation hypothesis, A. maculatum populations inhabiting ponds with high beetle densities grew larger tail muscles relative to other populations when raised in a common environment. However, populations exposed to strong A. opacum selection did not evolve larger tailfins as predicted. High gene flow or morphological plasticity could explain the absence of this morphological response to A. opacum. Overall, results suggest that populations can sometimes evolve adaptive traits in response to locally variable selection regimes even across the very limited distances that separate populations in this study. If prey populations often differ in their defenses against local predators, then this variation could affect the outcome of species interactions in local communities.  相似文献   

18.
Morphologies of bird species often vary along elevation gradients, yet causes of the variation have not been examined experimentally. We investigated variation in morphological traits of the dark‐eyed junco Junco hyemalis, breeding at 1,000 m a.s.l. (low‐elevation; i.e. low) and 2,000 m asl (high‐elevation; i.e. high) in the Rocky Mountains, Canada. Eight morphological traits were measured in free‐living birds. We found two consistent differences in populations between elevations: at high‐elevation sites, females had longer wings and males had longer tails than birds from low‐ elevation sites. Other age‐ and gender‐ specific results were observed in free‐living birds between elevations: tarsi were shorter in high‐elevation second year (SY) females and after second year (ASY) males, beak lengths were slightly longer in low‐elevation SY females, and high‐elevation ASY females tended to have lower fat than low‐elevation ASY females. Morphological differences may result from genetic differences between elevations, or phenotypic flexibility resulting from exposure to the different environmental conditions. To identify which mechanism caused the difference in morphometrics, hand‐reared birds from low‐ and high‐elevation habitats were raised in identical conditions with unlimited access to high quality food until they had replaced all feathers. The traits measured in the lab (wing and rectrix length, weight and fat score) tended to increase in magnitude compared to field values. Juncos from high‐ and low‐elevations had similar responses to the aviary environment, with one exception: males from high‐elevation sites had greater weight gain relative to free‐living juncos than males from low‐elevation sites. Thus, morphological traits in dark‐eyed juncos were phenotypically flexible, capable of growing larger in the laboratory environment. However, there were also persistent genetic or perinatal/maternal differences underlying population responses that prevented traits from converging under aviary conditions. As a result, trait size differences between high‐ and low‐elevation populations were maintained or exacerbated in the common aviary environment.  相似文献   

19.
We examined the genetic composition, habitat use, and morphological variation of a Phoxinus eos-neogaeus unisexual hybrid complex and its sexually reproducing progenitor species inhabiting beaver-modified drainages of Voyageurs National Park, Minnesota. In addition to the single diploid P. eos-neogaeus gynogenetic clone, triploid and diploid-triploid mosaic biotypes were present at our study sites. Both P. eos and P. neogaeus, and all three hybrid biotypes were ubiquitous throughout one intensively surveyed drainage, but abundances and relative frequencies of the parental species and hybrids varied considerably within and among successional environments. Data from a large number of additional sites indicated that the proportion of polyploid hybrids within an environment was negatively related to hybrid relative frequency, implying that the genomic constitution of hybrids is an important determinant of clonal fitness among successional environments. Statistical comparisons of variation along size-free multivariate body shape axes indicated that despite its genetic uniformity, the P. eos-neogaeus clone is no less variable than its sexual progenitors, suggesting that a single genotype may actually respond to environmental variation with as much phenotypic variation as a genetically variable sexual population. The incorporation and expression of a third genome in triploid and diploid-triploid mosaic biotypes derived from the gynogenetic clone significantly expanded phenotypic variation of the clone. This additional variation results in greater similarities in habitat use and morphological overlap with the parental species, primarily P. eos, the predominant sperm donor for gynogenetic hybrid females in this complex. Polyploid augmentation of a diploid gynogenetic clone appears to be typical in the P. eos-neogaeus complex, and the additional genetic and phenotypic variation that it generates has potentially significant ecological and evolutionary consequences for the success and persistence of a single genotype in highly variable environments.  相似文献   

20.
Sources of the extensive morphological variation of the species and hybrids ofPotamogeton were studied, especially from the viewpoint of the stability of the morphological characters used inPotamogeton taxonomy. Transplant experiments, the cultivation of clones under different values of environmental factors, and the cultivation of different clones under uniform conditions were performed to assess the proportion of phenotypic plasticity in the total morphological variation. Samples from 184 populations of 41Potamogeton taxa were grown. The immense range of phenotypic plasticity, which is possible for a single clone, is documented in detail in 14 well-described examples. The differences among distinct populations of a single species observed in the field were mostly not maintained when grown together under the same environmental conditions. Clonal material cultivated under different values of environmental factors produced distinct phenotypes, and in a few cases a single genotype was able to demonstrate almost the entire range of morphological variation in an observed trait known for that species. Several characters by recent literature claimed to be suitable for distinguishing varieties or even species were proven to be dependent on environmental conditions and to be highly unreliable markers for the delimiation of taxa. The unsatisfactory taxonomy that results when such classification of phenotypes is adopted is illustrated by three examples from recent literature. Phenotypic plasticity was found to be the main source of morphological variation within the species ofPotamogeton, having much more influence than morphological differences caused by different genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号