首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patel B  Finke JM 《Biophysical journal》2007,93(7):2457-2471
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.  相似文献   

2.
The FF domain from the human protein HYPA/FBP11 folds via a low-energy on-pathway intermediate (I). Elucidation of the structure of such folding intermediates and denatured states under conditions that favour folding are difficult tasks. Here, we investigated the millisecond time-scale equilibrium folding transition of the 71-residue four-helix bundle wild-type protein by (15)N, (13)C(alpha) and methyl(13)C Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiments and by (1)H/(2)H-exchange measurements. The relaxation data for the wild-type protein fitted a simple two-site exchange process between the folded state (F) and I. Destabilization of F in mutants A17G and Q19G allowed the detection of the unfolded state U by (15)N CPMG relaxation dispersion. The dispersion data for these mutants fitted a three-site exchange scheme, U<-->I<-->F, with I populated higher than U. The kinetics and thermodynamics of the folding reaction were obtained via temperature and urea-dependent relaxation dispersion experiments, along with structural information on I from backbone (15)N, (13)C(alpha) and side-chain methyl (13)C chemical shifts, with further information from protection factors for the backbone amide groups from (1)H/(2)H-exchange. Notably, helices H1-H3 are at least partially formed in I, while helix H4 is largely disordered. Chemical shift differences for the methyl (13)C nuclei suggest a paucity of stable, native-like hydrophobic interactions in I. These data are consistent with Phi-analysis of the rate-limiting transition state between I and F. The combination of relaxation dispersion and Phi data can elucidate whole experimental folding pathways.  相似文献   

3.
The N-terminal beta-hairpin sequence of ubiquitin has been implicated as a folding nucleation site. To extend and stabilise the ubiquitin folding nucleus, we have inserted an autonomously folding 14-residue peptide sequence beta4 which in isolation forms a highly populated beta-hairpin (>70%) stabilised by local interactions. NMR structural analysis of the ubiquitin mutant (Ubeta4) shows that the hairpin finger is fully structured and stabilises ubiquitin by approximately 8kJmol(-1). Protein engineering and kinetic (phi(F)-value) analysis of a series of Ubeta4 mutants shows that the hairpin extension of Ubeta4 is also significantly populated in the transition state (phi(F)-values >0.7) and has the effect of templating the formation of native contacts in the folding nucleus of ubiquitin. However, at low denaturant concentrations the chevron plot of Ubeta4 shows a small deviation from linearity (roll-over effect), indicative of the population of a compact collapsed state, which appears to arise from over-stabilisation of local interactions. Destabilising mutations within the native hairpin sequence and within the engineered hairpin extension, but not elsewhere, eliminate this non-linearity and restore apparent two-state behaviour. The pitfall to stabilising local interactions is to present hurdles to the rapid and efficient folding of small proteins down a smooth folding funnel by trapping partially folded or misfolded states that must unfold or rearrange before refolding.  相似文献   

4.
The role of the non-native beta-turn sequence (NPDG) in nucleating the folding of a beta-hairpin peptide derived from the N-terminus of ubiquitin, has been examined by NMR and CD spectroscopy. The NPDG sequence, while representing a common two-residue type I turn sequence in proteins, folds to give a G1-bulged type I turn in the context of a beta-hairpin peptide, to the exclusion of other possible conformations. The turn conformation results in misalignment of the two beta strands and a beta hairpin with non-native side chain interactions. A truncated 12-residue analogue of the hairpin, in which the majority of residues in the N-terminal beta strand have been deleted, shows some weak propensity to fold into a G-bulged type I turn conformation in the absence of interstrand stabilizing interactions. The NPDG turn sequence pays some of the entropic cost in initiating folding allowing interstrand interactions, which in this case arise from the non-native pairing of residue side chains, to stabilize a significant population of the folded state. Examination of the relative abundance of the Pro-Asp type I turn, with G in the +B1 position, vs. the type I G-bulged turn PXG, in a database of high resolution structures, reveals 48 instances of PXG bulged turns for which X = Asp is by far the most common residue with 20 occurrences. Strikingly, there are no examples of a type I PD turn with G at the +B1 position, in good agreement with our experimental observations that the PDG G-bulged turn is populated preferentially in solution.  相似文献   

5.
Eliezer D  Chung J  Dyson HJ  Wright PE 《Biochemistry》2000,39(11):2894-2901
The partly folded state of apomyoglobin at pH 4 represents an excellent model for an obligatory kinetic folding intermediate. The structure and dynamics of this intermediate state have been extensively examined using NMR spectroscopy. Secondary chemical shifts, (1)H-(1)H NOEs, and amide proton temperature coefficients have been used to probe residual structure in the intermediate state, and NMR relaxation parameters T(1) and T(2) and ?(1)H?-(15)N NOE have been analyzed using spectral densities to correlate motion of the polypeptide chain with these structural observations. A significant amount of helical structure remains in the pH 4 state, indicated by the secondary chemical shifts of the (13)C(alpha), (13)CO, (1)H(alpha), and (13)C(beta) nuclei, and the boundaries of this helical structure are confirmed by the locations of (1)H-(1)H NOEs. Hydrogen bonding in the structured regions is predominantly native-like according to the amide proton chemical shifts and their temperature dependence. The locations of the A, G, and H helix segments and the C-terminal part of the B helix are similar to those in native apomyoglobin, consistent with the early, complete protection of the amides of residues in these helices in quench-flow experiments. These results confirm the similarity of the equilibrium form of apoMb at pH 4 and the kinetic intermediate observed at short times in the quench-flow experiment. Flexibility in this structured core is severely curtailed compared with the remainder of the protein, as indicated by the analysis of the NMR relaxation parameters. Regions with relatively high values of J(0) and low values of J(750) correspond well with the A, B, G, and H helices, an indication that nanosecond time scale backbone fluctuations in these regions of the sequence are restricted. Other parts of the protein show much greater flexibility and much reduced secondary chemical shifts. Nevertheless, several regions show evidence of the beginnings of helical structure, including stretches encompassing the C helix-CD loop, the boundary of the D and E helices, and the C-terminal half of the E helix. These regions are clearly not well-structured in the pH 4 state, unlike the A, B, G, and H helices, which form a native-like structured core. However, the proximity of this structured core most likely influences the region between the B and F helices, inducing at least transient helical structure.  相似文献   

6.
beta(2)-Microglobulin (beta2-m) is a major component of dialysis-related amyloid fibrils. Although recombinant beta2-m forms needle-like fibrils by in vitro extension reaction at pH 2.5, reduced beta2-m, in which the intrachain disulfide bond is reduced, cannot form typical fibrils. Instead, thinner and flexible filaments are formed, as shown by atomic force microscopy images. To clarify the role of the disulfide bond in amyloid fibril formation, we characterized the conformations of the oxidized (intact) and reduced forms of beta2-m in the acid-denatured state at pH 2.5, as well as the native state at pH 6.5, by heteronuclear NMR. [(1)H]-(15)N NOE at the regions between the two cysteine residues (Cys25-Cys80) revealed a marked difference in the pico- and nanosecond time scale dynamics between that the acid-denatured oxidized and reduced states, with the former showing reduced mobility. Intriguingly, the secondary chemical shifts, DeltaCalpha, DeltaCO, and DeltaHalpha, and (3)J(HNHalpha) coupling constants indicated that both the oxidized and reduced beta2-m at pH 2.5 have marginal alpha-helical propensity at regions close to the C-terminal cysteine, although it is a beta-sheet protein in the native state. The results suggest that the reduced mobility of the denatured state is an important factor for the amylodogenic potential of beta2-m, and that the marginal helical propensity at the C-terminal regions might play a role in modifying this potential.  相似文献   

7.
Yao J  Chung J  Eliezer D  Wright PE  Dyson HJ 《Biochemistry》2001,40(12):3561-3571
Apomyoglobin forms a denatured state under low-salt conditions at pH 2.3. The conformational propensities and polypeptide backbone dynamics of this state have been characterized by NMR. Nearly complete backbone and some side chain resonance assignments have been obtained, using a triple-resonance assignment strategy tailored to low protein concentration (0.2 mM) and poor chemical shift dispersion. An estimate of the population and location of residual secondary structure has been made by examining deviations of (13)C(alpha), (13)CO, and (1)H(alpha) chemical shifts from random coil values, scalar (3)J(HN,H)(alpha) coupling constants and (1)H-(1)H NOEs. Chemical shifts constitute a highly reliable indicator of secondary structural preferences, provided the appropriate random coil chemical shift references are used, but in the case of acid-unfolded apomyoglobin, (3)J(HN,H)(alpha) coupling constants are poor diagnostics of secondary structure formation. Substantial populations of helical structure, in dynamic equilibrium with unfolded states, are formed in regions corresponding to the A and H helices of the folded protein. In addition, the deviation of the chemical shifts from random coil values indicates the presence of helical structure encompassing the D helix and extending into the first turn of the E helix. The polypeptide backbone dynamics of acid-unfolded apomyoglobin have been investigated using reduced spectral density function analysis of (15)N relaxation data. The spectral density J(omega(N)) is particularly sensitive to variations in backbone fluctuations on the picosecond to nanosecond time scale. The central region of the polypeptide spanning the C-terminal half of the E helix, the EF turn, and the F helix behaves as a free-flight random coil chain, but there is evidence from J(omega(N)) of restricted motions on the picosecond to nanosecond time scale in the A and H helix regions where there is a propensity to populate helical secondary structure in the acid-unfolded state. Backbone fluctuations are also restricted in parts of the B and G helices due to formation of local hydrophobic clusters. Regions of restricted backbone flexibility are generally associated with large buried surface area. A significant increase in J(0) is observed for the NH resonances of some residues located in the A and G helices of the folded protein and is associated with fluctuations on a microsecond to millisecond time scale that probably arise from transient contacts between these distant regions of the polypeptide chain. Our results indicate that the equilibrium unfolded state of apomyoglobin formed at pH 2.3 is an excellent model for the events that are expected to occur in the earliest stages of protein folding, providing insights into the regions of the polypeptide that spontaneously undergo local hydrophobic collapse and sample nativelike secondary structure.  相似文献   

8.
Recent H-D exchange 1H NMR studies of the refolding of Staphylococcal nuclease (P117G) variant suggest that, a region of the protein corresponding to a beta hairpin in the native structure folded early in the refolding process. In order to investigate whether the formation of beta hairpin is an early folding event, we investigated the conformational features of the beta hairpin peptide model Ac-DTVKLMYKGQPMTFR-NH2 from Staphylococcal nuclease with 1H NMR techniques. It appears that the peptide aggregates even at a low concentration. However, based on the observation of weak dnn(i, i + 1) NOEs between K8-G9, G9-Q10, an upfield shift of Gly9 NH and a low temperature coefficient (-d delta/dT) for Gly9 NH, we suggest that the sequence YKGQP as part of the beta hairpin peptide model samples conformational forms with reduced conformational entropy and turn potential. The presence of aggregation could be restricting the population of folded conformational forms and formation of beta hairpin at detectable concentrations. We suggest that, formation of beta hairpin could be an early event in the folding of Staphylococcal nuclease and this observation correlates with H-D exchange 1H NMR results and also with the prediction of a protein folding model proposed in literature.  相似文献   

9.
The N-terminal 17 residues of ubiquitin have been shown by 1H NMR to fold autonomously into a beta-hairpin structure in aqueous solution. This structure has a specific, native-like register, though side-chain contacts differ in detail from those observed in the intact protein. An autonomously folding hairpin has previously been identified in the case of streptococcal protein G, which is structurally homologous with ubiquitin, but remarkably, the two are not in topologically equivalent positions in the fold. This suggests that the organization of folding may be quite different for proteins sharing similar tertiary structures. Two smaller peptides have also been studied, corresponding to the isolated arms of the N-terminal hairpin of ubiquitin, and significant differences from simple random coil predictions observed in the spectra of these subfragments, suggestive of significant limitation of the backbone conformational space sampled, presumably as a consequence of the strongly beta-structure favoring composition of the sequences. This illustrates the ability of local sequence elements to express a propensity for beta-structure even in the absence of actual sheet formation. Attempts were made to estimate the population of the folded state of the hairpin, in terms of a simple two-state folding model. Using published "random coil" values to model the unfolded state, and values derived from native ubiquitin for the putative unique, folded state, it was found that the apparent population varied widely for different residues and with different NMR parameters. Use of the spectra of the subfragment peptides to provide a more realistic model of the unfolded state led to better agreement in the estimates that could be obtained from chemical shift and coupling constant measurements, while making it clear that some other approaches to population estimation could not give meaningful results, because of the tendency to populate the beta-region of conformational space even in the absence of the hairpin structure.  相似文献   

10.
The two-state folding reaction of the cold shock protein from Bacillus caldolyticus (Bc-Csp) is preceded by a rapid chain collapse. A fast shortening of intra-protein distances was revealed by F?rster resonance energy transfer (FRET) measurements with protein variants that carried individual pairs of donor and acceptor chromophores at various positions along the polypeptide chain. Here we investigated the specificity of this rapid compaction. Energy transfer experiments that probed the stretching of strand beta2 and the close approach between the strands beta1 and beta2 revealed that the beta1-beta2 hairpin is barely formed in the collapsed form, although it is native-like in the folding transition state of Bc-Csp. The time course of the collapse could not be resolved by pressure or temperature jump experiments, indicating that the collapsed and extended forms are not separated by an energy barrier. The co-solute (NH4)2SO4 stabilizes both native Bc-Csp and the collapsed form, which suggests that the large hydrated SO4(2-) ions are excluded from the surface of the collapsed form in a similar fashion as they are excluded from folded Bc-Csp. Ethylene glycol increases the stability of proteins because it is excluded preferentially from the backbone, which is accessible in the unfolded state. The collapsed form of Bc-Csp resembles the unfolded form in its interaction with ethylene glycol, suggesting that in the collapsed form the backbone is still accessible to water and small molecules. Our results thus rule out that the collapsed form is a folding intermediate with native-like chain topology. It is better described as a mixture of compact conformations that belong to the unfolded state ensemble. However, some of its structural elements are reminiscent of the native protein.  相似文献   

11.
We have investigated by multidimensional NMR the structural and dynamic characteristics of the urea-denatured state of activated SUMO-1, a 97-residue protein belonging to the growing family of ubiquitin-like proteins involved in post-translational modifications. Complete backbone amide and 15N resonance assignments were obtained in the denatured state by using HNN and HN(C)N experiments. These enabled other proton assignments from TOCSY-HSQC spectra. Secondary Halpha chemical shifts and 1H-1H NOE indicate that the protein chain in the denatured state has structural preferences in the broad beta-domain for many residues. Several of these are seen to populate the (phi,psi) space belonging to polyproline II structure. Although there is no evidence for any persistent structures, many contiguous stretches of three or more residues exhibit structural propensities suggesting possibilities of short-range transient structure formation. The hetero-nuclear 1H-15N NOEs are extremely weak for most residues, except for a few at the C-terminal, and the 15N relaxation rates show sequence-wise variation. Some of the regions of slow motions coincide with those of structural preferences and these are interspersed by highly flexible residues. The implications of these observations for the early folding events starting from the urea-denatured state of activated SUMO-1 have been discussed.  相似文献   

12.
Cordier F  Grzesiek S 《Biochemistry》2004,43(35):11295-11301
The backbone hydrogen bond (H-bond) network of the partially folded A-state of ubiquitin (60% methanol, 40% water, pH 2) has been characterized quantitatively by (h3)J(NC)(') H-bond scalar couplings between the (15)N nuclei of amino acid H-bond donors and the (13)C carbonyl nuclei of the acceptors. Results on (h3)J(NC)(') couplings and the amide proton ((1)H(N)) chemical shifts for the A-state are compared quantitatively to the native state. The (h3)J(NC)(') correlations of the A-state show intact, nativelike H-bonds of the first beta-hairpin beta1/beta2 and the alpha-helix, albeit at lower strength, whereas the H-bonds in the C-terminal part change from a pure beta-structure to an all alpha-helical H(N)(i)-->O(i-4) connectivity pattern. A residue-specific analysis reveals that the conformations within the conserved secondary structure segments are much more homogeneous in the A-state than in the native state. Thus, the strong asymmetry of (h3)J(NC)(') couplings and (1)H(N) chemical shifts between the interior and exterior sides of the native state alpha-helix vanishes in the A-state. This indicates that the bend of this helix around the native state hydrophobic core is released in the homogeneous solvent environment of the A-state. Similarly, an irregularity in the behavior of H-bond I3-->L15 in hairpin beta1/beta2, which results from strong contacts to strand beta5 in the native state, is absent in the A-state. These findings rationalize the behavior of the (1)H(N) chemical shifts in both states and indicate that the A-state is in many aspects similar to the onset of thermal denaturation of the native state.  相似文献   

13.
We have used distributed computing techniques and a supercluster of thousands of computer processors to study folding of the C-terminal beta-hairpin from protein G in atomistic detail using the GB/SA implicit solvent model at 300 K. We have simulated a total of nearly 38 micros of folding time and obtained eight complete and independent folding trajectories. Starting from an extended state, we observe relaxation to an unfolded state characterized by non-specific, temporary hydrogen bonding. This is followed by the appearance of interactions between hydrophobic residues that stabilize a bent intermediate. Final formation of the complete hydrophobic core occurs cooperatively at the same time that the final hydrogen bonding pattern appears. The folded hairpin structures we observe all contain a closely packed hydrophobic core and proper beta-sheet backbone dihedral angles, but they differ in backbone hydrogen bonding pattern. We show that this is consistent with the existing experimental data on the hairpin alone in solution. Our analysis also reveals short-lived semi-helical intermediates which define a thermodynamic trap. Our results are consistent with a three-state mechanism with a single rate-limiting step in which a varying final hydrogen bond pattern is apparent, and semi-helical off-pathway intermediates may appear early in the folding process. We include details of the ensemble dynamics methodology and a discussion of our achievements using this new computational device for studying dynamics at the atomic level.  相似文献   

14.
We present a detailed investigation of unfolded and partially folded states of a mutant apomyoglobin (apoMb) where the distal histidine has been replaced by phenylalanine (H64F). Previous studies have shown that substitution of His64, located in the E helix of the native protein, stabilizes the equilibrium molten globule and native states and leads to an increase in folding rate and a change in the folding pathway. Analysis of changes in chemical shift and in backbone flexibility, detected via [1H]-15N heteronuclear nuclear Overhauser effect measurements, indicates that the phenylalanine substitution has only minor effects on the conformational ensemble in the acid- and urea-unfolded states, but has a substantial effect on the structure, dynamics, and stability of the equilibrium molten globule intermediate formed near pH 4. In H64F apomyoglobin, additional regions of the polypeptide chain are recruited into the compact core of the molten globule. Since the phenylalanine substitution has negligible effect on the unfolded ensemble, its influence on folding rate and stability comes entirely from interactions within the compact folded or partly folded states. Replacement of His64 with Phe leads to favorable hydrophobic packing between the helix E region and the molten globule core and leads to stabilization of helix E secondary structure and overall thermodynamic stabilization of the molten globule. The secondary structure of the equilibrium molten globule parallels that of the burst phase kinetic intermediate; both intermediates contain significant helical structure in regions of the polypeptide that comprise the A, B, E, G, and H helices of the fully folded protein.  相似文献   

15.
NMR spectroscopy is used to show that a 20-residue beta-hairpin peptide sequence derived from ferredoxin I, with a Pro-Asp two-residue type I turn which is uncommon in beta-hairpins, is unstructured in aqueous solution but shows NOE evidence for partial folding in the presence of sodium dodecylsulphate micelles. The peptide has a number of lysine residues in the N-terminal beta-strand capable of interacting with the micelle surface and templating the partial folding of the hairpin by reducing the entropic cost of ordering the peptide backbone.  相似文献   

16.
A reversible acid-denaturation process of the beta 2 subunit of Escherichia coli tryptophan synthase has been set up. The acid-denatured state has been physically characterized: though not in a random-coiled conformation, it is extensively denatured. The renaturation of this denatured state of beta 2 has been observed in a stopped-flow system, in the presence of a monoclonal antibody directed against native beta 2. It is shown that the association occurs very early in the folding of beta 2. The association rate constants of the antibody with the immunoreactive folding intermediate and with native beta 2 are the same (3 X 10(5) M-1.s-1). But at high antibody concentrations the formation of the antigen/antibody complex is rate limited by a rapid (5.4 X 10(-2) s-1) isomerization of refolding beta chains. This isomerization appears to reflect the formation of at least part of the epitope recognized by the antibody during the folding of beta 2. Further conformational adjustments occurring later in the folding pathway would then allow the ultimate structuring of the epitope.  相似文献   

17.
Bovine beta-lactoglobulin is denatured by increased temperature (heat denaturation) and by decreased temperature (cold-denaturation) in the presence of 4 M urea at pH 2.5. We characterized the structure of the cold-denatured state of beta-lactoglobulin using circular dichroism (CD), small-angle X-ray scattering (SAXS) and heteronuclear nuclear magnetic resonance (NMR). CD and SAXS indicated that the cold-denatured state, in comparison with the highly denatured state induced by urea, is rather compact, retaining some secondary structure, but no tertiary structure. The location of the residual structures in the cold-denatured state and their stability were characterized by 1H/2H exchange combined with heteronuclear NMR. The results indicated that the residues adjacent to the disulfide bond (C106-C119) connecting beta-strands G and H had markedly high protection factors, suggesting the presence of a native-like beta-hairpin stabilized by the disulfide bond. Since this beta-hairpin is conserved between different conformational states, including the kinetic refolding intermediate, it should be of paramount importance for the folding and stability of beta-lactoglobulin. On the other hand, the non-native alpha-helix suggested for the folding intermediate was not detected in the cold-denatured state. The 1H/2H exchange experiments showed that the protection factors of a mixture of the native and cold-denatured states is strongly biased by that of the labile cold-denatured state, consistent with a two-process model of the exchange.  相似文献   

18.
Atomic-level analyses of non-native protein ensembles constitute an important aspect of protein folding studies to reach a more complete understanding of how proteins attain their native form exhibiting biological activity. Previously, formation of hydrophobic clusters in the 6 M urea-denatured state of an ultrafast folding mini-protein known as TC5b from both photo-CIDNP NOE transfer studies and FCS measurements was observed. Here, we elucidate the structural properties of this mini-protein denatured in 6 M urea performing (15)N NMR relaxation studies together with a thorough NOE analysis. Even though our results demonstrate that no elements of secondary structure persist in the denatured state, the heterogeneous distribution of R(2) rate constants together with observing pronounced heteronuclear NOEs along the peptide backbone reveals specific regions of urea-denatured TC5b exhibiting a high degree of structural rigidity more frequently observed for native proteins. The data are complemented with studies on two TC5b point mutants to verify the importance of hydrophobic interactions for fast folding. Our results corroborate earlier findings of a hydrophobic cluster present in urea-denatured TC5b comprising both native and non-native contacts underscoring their importance for ultra rapid folding. The data assist in finding ways of interpreting the effects of pre-existing native and/or non-native interactions on the ultrafast folding of proteins; a fact, which might have to be considered when defining the starting conditions for molecular dynamics simulation studies of protein folding.  相似文献   

19.
Kobayashi N  Honda S  Munekata E 《Biochemistry》1999,38(11):3228-3234
Hierarchical studies on the folding of protein G B1 domain have shown that the C-terminal fragment (C16) has a considerable amount of beta-hairpin structure that exchanges between the folded and unfolded states at room temperature, and that the C16 fragment binds noncovalently to an N-terminal fragment (N40) under physiological conditions. Those studies have led us to the hypothesis that the amphipathic beta-hairpin structure of C16 initiates folding of the domain. To obtain a more detailed understanding of the folding mechanism of the domain, we designed a mutant of C16 (SS16ox) with a disulfide bond between residues 41 and 56, and then examined the interaction of the mutant with N40 by surface plasmon resonance (SPR) and by thermal denaturation studies using circular dichroism. SS16ox strongly interacted with N40, with an equilibrium constant, KD, that was 7-fold higher than wild-type. The association rate constant, kon, of SS16ox was 8.7-fold higher than that of wild-type. This strong interaction can be explained by the entropic effect of the disulfide bond. The introduction of the disulfide bond into C16 stabilizes the beta-hairpin structure of C16, accelerates the association rate with N40, and then stabilizes the whole complex. These results support a hypothetical folding mechanism of protein G where the amphipathic beta-hairpin structure of C16 acts as a nucleus and accelerates folding of the whole molecule.  相似文献   

20.
It is known that the peptide corresponding to the N-terminal beta-hairpin of ubiquitin, U(1-17), can populate the monomeric beta-hairpin conformation in aqueous solution. In this study, we show that the Gly-10 that forms the bulge of the beta-turn in this hairpin is very important to the stability of the hairpin. The deletion of this residue to desG10(1-16) unfolds the structure of the peptide in water. Even under denaturing conditions, this bulge appears to be important in maintaining the residual structure of ubiquitin, which involves tertiary interactions within the sequence 1 to 34 in the denatured state. We surmise that this residual structure functions as one of the nucleation centers in the folding process and is important in stabilizing the transition state. In accordance with this idea, deleting Gly-10 slows down the refolding and unfolding rate by about one half.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号