首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of the reaction between thrombin and antithrombin III is greatly increased in the presence of heparin. Several mechanisms for this effect are possible. To study the problems commercial heparin was fractionated into one fraction of high anticogulant activity and one of low anticoagulant activity by affinity chromatography on matrix-bound antithrombin III. The strength of the binding of the two heparin fractions to antithrombin III and thrombin, respectively, was determined by a crossed immunoelectrophoresis technique. As was to be expected, the high activity fraction was strongly bound to antithrombin III while the low activity fraction was weakly bound. In contrast, thrombin showed equal binding affinity for both heparin fractions. The ability of the two heparin fractions to catalyse the inhibition of thrombin by antithrombin III was determined and was found to be much greater for the high activity heparin fraction. A mechanism for the reaction between thrombin and antithrombin III in the presence of small amounts of heparin is suggested, whereby antithrombin III first binds heparin and this complex then inhibits thrombin by interaction with both the bound heparin and the antithrombin III.  相似文献   

2.
Heparin fractions of different molecular weights and anticoagulant activities were prepared by chromatography on protamine-Sepharose, and the association constants and stoichiometry for binding to antithrombin III were determined by measurement of enhancement of tryptophan fluorescence. A 7,900 molecular weight heparin preparation bound to antithrombin III with a stoichiometry of close to 2:1, whereas 14,300 and 21,600 molecular weight fractions bound at approximately 1:1 with the protein. Apparent association constants were 0.66 × 106 M?1 for the low molecular weight preparation and 2.89 × 106 M?1 for the high molecular weight material. Maximal fluorescence enhancement was greater with the higher molecular weight heparin. These results suggest a model of heparin-antithrombin III binding in which two sites on antithrombin III can accommodate one large heparin molecule with high affinity or two smaller molecules with low affinity.  相似文献   

3.
Kinetic characteristics of several heparin preparations and substitute heparins were determined to help understand the bases for activity differences. Several materials were highly active in factor Xa inhibition and the reaction rate at constant factor Xa concentration appeared to be predicted by the extent of intrinsic antithrombin III fluorescence change induced by the polysaccharide. Heparin fractions of different molecular weight and affinity for antithrombin III showed similar kinetic parameters in catalysis of the thrombin-antithrombin III reaction when these parameters were expressed on the basis of antithrombin III-binding heparin. The latter was determined by stoichiometric titration of the antithrombin III fluorescence change by the heparin preparation. However, the various heparin fractions showed very different specific activities per mg of total polysaccharide. This indicated that functional heparin molecules had similar kinetic properties regardless of size or antithrombin III-binding affinity and is possible because the Km for antithrombin III is determined by diffusion rather than by binding affinity. Substitute heparins and depolymerized heparin were poor catalysts for thrombin inhibition, due at least partially to their affinity for thrombin. This latter binary interaction inhibits thrombin reaction in the heparin-catalyzed reaction.  相似文献   

4.
The effect of various well-characterized heparin preparations on the inactivation of human Factor XIa by human antithrombin III was studied. The heparin preparations used were unfractionated heparin and four heparin fractions obtained after anion-exchange chromatography. Inactivation of Factor XIa was monitored with S2366 as chromogenic substrate and followed pseudo-first-order reaction kinetics under all reaction conditions tested. Enhancement of the rate of inhibition of Factor XIa in the presence of unfractionated heparin correlated to the binding of antithrombin III to heparin. From the kinetic data a binding constant of 0.1 microM was inferred. The maximum rate enhancement, achieved at saturating heparin concentrations, was 30-fold. The rate enhancement achieved in the presence of each of the heparin fractions could also be correlated to the binding of antithrombin III to the heparin. The binding constant inferred from the kinetic data varied from 0.10 to 0.28 microM and the number of binding sites for antithrombin III varied from 0.06 to 0.74 site per heparin molecule. The maximum rate enhancements, achieved at saturating heparin concentrations, were strongly dependent on the type of heparin used and varied from 7-fold for fraction A to 41-fold for fraction D. Therefore, although the stimulation of Factor XIa inactivation by antithrombin III could be quantitatively correlated to the binding of antithrombin III to heparin, the heparin-catalysed inhibition of Factor XIa is dependent not only upon the degree of binding of antithrombin III to heparin but also upon the type of heparin to which antithrombin III is bound.  相似文献   

5.
The ability of heparin fractions of different molecular weight to potentiate the action of antithrombin III against the coagulation factors thrombin and Xa has been examined in purified reaction mixtures and in plasma. Residual thrombin and Xa have been determined by their peptidase activities against the synthetic peptide substrates H-D-Phe-Pip-Arg-pNA and Bz-Ile-Gly-Arg-pNA. High molecular weight heparin fractions were found to have higher anticoagulant activities than low molecular weight heparin when studied with both thrombin and Xa incubation mixtures in purified mixtures and in plasma. The inhibition of thrombin by heparin fractions and antithrombin III was unaffected by other plasma components. However, normal human plasma contained a component that inhibited the heparin and antithrombin III inhibition of Xa particularly when the high molecular weight heparin fraction was used. Experiments using a purified preparation of platelet factor 4 suggested that the platelet-derived heparin-neutralizing protein was not responsible for the inhibition.  相似文献   

6.
The molecular interactions between components of the heparin-catalyzed antithrombin III/thrombin reaction were investigated by light scattering. When heparin was added to antithrombin III, the molecular weight increased to a maximum and then decreased to that of a 1:1 (antithrombin III X heparin) complex. The initial molecular weights at low heparin to antithrombin III ratios were consistent with the formation of a 2:1 (antithrombin III X heparin) complex in which only one antithrombin III molecule had undergone the conformational change measured by protein fluorescence enhancement. The peak molecular weight never reached that of a complete 2:1 complex. This behavior was observed for bovine and human antithrombin III in the presence of both unfractionated heparin and high molecular weight-high affinity heparin. Pentosane polysulfate also caused some multiple associations. Bovine antithrombin III and thrombin formed a 1:1 complex that underwent further aggregation within minutes, while the human proteins did not aggregate on this time scale after forming the 1:1 complex. In the presence of stoichiometric amounts of heparin, the bovine proteins formed an initial complex of Mr = 230,000 (corresponding to a dimer of heparin-antithrombin III-thrombin) which underwent further aggregation. The human proteins, however, formed a 1:1 (antithrombin III X thrombin) initial complex in the presence of heparin, followed by aggregation. These interactions of thrombin and antithrombin with heparin suggest complex interactions that could relate to heparin function.  相似文献   

7.
It is proposed that the anti-coagulant activity of heparin is related to the probability of finding, in a random distribution of different disaccharides, a dodecasaccharide with the sequence required for binding to antithrombin. It is shown that this probability is a function of the degree of polymerization of heparin. The hypothesis has been been tested with a series of narrow-molecular-weight-range fractions ranging from 5,600 to 36,000. The fractions having mol.wts. below 18,000 (comprising 85% of the original preparation) followed the predicted probability relationship as expressed by the proportion of molecules capable of binding to antithrombin. The probability that any randomly chosen dodecasaccharide sequence in heparin should bind to antithrombin was calculated to 0.022. The fraction with mol.wt. 36,000 contained proteoglycan link-region fragments, which may explain the deviation of the high-molecular-weight fractions from the hypothetical relationship. The relationship between anti-coagulant activity and molecular weight cannot be explained solely on the basis of availability of binding sites for antithrombin. The activity of high-affinity heparin (i.e. molecules containing high-affinity binding sites for antithrombin), determined either by a whole-blood clotting procedure or by thrombin inactivation in the presence of antithrombin, thus remained dependent on molecular weight. Possible explanations of this finding are discussed. One explanation could be a requirement for binding of thrombin to the heparin chain adjacent to antithrombin.  相似文献   

8.
The mechanism of the heparin-promoted reaction of thrombin with antithrombin III was investigated by using covalent complexes of antithrombin III with either high-affinity heparin (Mr = 15,000) or heparin fragments having an average of 16 and 12 monosaccharide units (Mr = 4,300 and 3,200). The complexes inhibit thrombin in the manner of active site-directed, irreversible inhibitors: (Formula: see text) That is, the inhibition rate of the enzyme is saturable with respect to concentration of complexes. The values determined for Ki = (k-1 + k2)/k1 are 7 nM, 100 nM, and 6 microM when the Mr of the heparin moieties are 15,000, 4,300, 3,200, respectively, whereas k2 (2 S-1) is independent of the heparin chain length. The bimolecular rate constant k2/Ki for intact heparin is 3 X 10(8) M-1 S-1 and the corresponding second order rate constant k1 is 6.7 X 10(8) M-1 S-1, a value greater than that expected for a diffusion-controlled bimolecular reaction. The bimolecular rate constants for the complexes with heparin of Mr = 4,300 and 3,200 are, respectively, 2 X 10(7) M-1 S-1 and 3 X 10(5) M-1 S-1. Active site-blocked thrombin is an antagonist of covalent antithrombin III-heparin complexes: the effect is monophasic and half-maximum at 4 nM of antagonist against the complex with intact heparin, whereas the effect is weaker against complexes with heparin fragments and not monophasic. We conclude that virtually all of the activity of high affinity, high molecular weight heparin depends on binding both thrombin and antithrombin III to heparin, and that the exceptionally high activity of heparin results in part from the capacity of thrombin bound nonspecifically to heparin to diffuse in the dimension of the heparin chain towards bound antithrombin III. Increasing the chain length of heparin results in an increased reaction rate because of a higher probability of interaction between thrombin and heparin in solution.  相似文献   

9.
Heparin, other glycosaminoglycans, and synthetic sulfated polymers have antithrombotic and anticoagulant activities, which may be mediated through a range of interactions with different proteins. A simple, quantitative method has been developed for assessing the affinity of interaction between sulfated polymers and proteins in the liquid phase. This has been used to compare the binding of a range of glycosaminoglycans and other sulfated polymers to antithrombin III and thrombin, a major inhibitor of and a central protease in the coagulation system, respectively. The results are consistent with the binding of naturally occurring glycosaminoglycans to antithrombin III solely through the well-defined antithrombin III-binding pentasaccharide found in heparin, the apparent affinity of a preparation depending upon its content of this pentasaccharide. Highly sulfated synthetic polymers will, however, bind antithrombin III by a second mechanism. The affinity of heparin for thrombin decreased with decreasing molecular weight. However, results obtained with heparan sulfate preparations did not indicate any clear relationship between either molecular weight or sulfate content and thrombin binding, but suggested that there may be an oligosaccharide sequence containing N-sulfate residues which confers high affinity for thrombin. In addition, some of the synthetic sulfated polymers bound thrombin with very high affinity.  相似文献   

10.
Multiple complexes of thrombin and heparin   总被引:2,自引:0,他引:2  
Fluorescence polarization has been used to study the interaction of thrombin and heparin, and the catalysis by heparin of the combination of thrombin and antithrombin. At low ionic strength (20 mM Tris, pH 7.4), the addition of heparins of known molecular weights to thrombin led to the formation of large complexes (defined as 'complex 1'). Further addition of heparin led to a rearrangement of these large complexes to form smaller complexes (defined as 'complex 2'). The molar ratio of thrombin to heparin in complex 1 increased with increasing heparin molecular weight, and corresponded to one thrombin molecule for every heparin segment of Mr 3000. The stoichiometry of complex 2 was 1 heparin to 1 thrombin, irrespective of the heparin molecular weight. At higher ionic strength (150 mM NaCl) some complex 1 was still formed. However, by reversing the titration and adding thrombin to fluorescein-heparin the dissociation constant for complex 2 was estimated to be 1-3 microM and independent of the heparin molecular weight. The complex formed between thrombin and heparin, to which antithrombin was attached, has a dissociation constant of 1-2 microM, again irrespective of the heparin molecular weight. In the heparin-catalysed thrombin-antithrombin reaction, an increase in the size of heparin leads to a lowering of the observed Km for thrombin. A possible explanation is that thrombin, after initial binding to the heparin, moves rapidly to the site where it combines with antithrombin.  相似文献   

11.
The present study has shown that calcium inhibits the heparin-catalyzed antithrombin III/thrombin reaction. The initial rate of thrombin (4.0 nM) inhibition by antithrombin III (200 nM) in the presence of heparin (2.5 ng/ml) decreased from 3.6 nM/min (in the absence of calcium) to 0.12 nM/min in the presence of 10 mM calcium. In the absence of heparin, the initial rate of thrombin inhibition by antithrombin III was not affected by calcium. The heparin-catalyzed antithrombin III/thrombin reaction is described by the general rate equation for a random-order, bireactant, enzyme-catalyzed reaction (M. J. Griffith (1982) J. Biol. Chem. 257, 13899-13902). As such, the reaction is saturable with respect to both thrombin and antithrombin III. The apparent kinetic parameters for the heparin-catalyzed antithrombin III/thrombin reaction were determined in the presence and absence of calcium. The apparent heparin/antithrombin III dissociation constant values were not measurably different in the presence of 0, 1.0, and 3.0 mM calcium. The apparent heparin/thrombin dissociation constant value increased from 7.0 nM, in the absence of calcium, to 10 and 30 nM in the presence of 1.0 and 3.0 mM calcium, respectively. The maximum reaction velocity, at saturation with respect to both proteins, was not affected by calcium. It is concluded that calcium binds to functional groups within the heparin molecule which are required for thrombin binding.  相似文献   

12.
The effect of bovine thrombomodulin on the specificity of bovine thrombin   总被引:8,自引:0,他引:8  
Bovine lung thrombomodulin is purified and used to investigate the basis of the change in substrate specificity of bovine thrombin when bound to thrombomodulin. Bovine thrombomodulin is a single polypeptide having an apparent molecular weight of 84,000 and associates with thrombin with high affinity and rapid equilibrium, to act as a potent cofactor for protein C activation and antagonist of reactions of thrombin with fibrinogen, heparin cofactor 2, and hirudin. Bovine thrombomodulin inhibits the clotting activity of thrombin with Kd less than 2.5 nM. Kinetic analysis of the effect of bovine thrombomodulin on fibrinopeptide A hydrolysis by thrombin indicates competitive inhibition with Kis = 0.5 nM. The active site of thrombin is little perturbed by thrombomodulin, as tosyl-Gly-Pro-Arg-p-nitroanilide hydrolysis and inhibition by antithrombin III are unaffected. Insensitivity of the reaction with antithrombin III is likewise observed with thrombin bound to thrombomodulin on intact endothelium. Antithrombin III-heparin, human heparin cofactor 2, and hirudin inhibit thrombin-thrombomodulin more slowly than thrombin. These effects may arise from a decrease in Ki of the inhibitors for thrombin-thrombomodulin or from changes in the active site not detected by tosyl-Gly-Pro-Arg-p-nitroanilide or antithrombin III. Bovine prothrombin fragment 2 inhibits thrombin clotting activity (Kd less than 7.5 microM) and acts as a competitive inhibitor of protein C activation (Kis = 2.1 microM). The data are consistent with a mechanism whereby thrombomodulin alters thrombin specificity by either binding to or allosterically altering a site on thrombin distinct from the catalytic center required for binding or steric accommodation of fibrinogen, prothrombin fragment 2, heparin cofactor 2, and hirudin.  相似文献   

13.
Specific binding of the anticoagulants heparin and antithrombin III to the blood clotting cascade factor human thrombin was recorded as a function of time with a Love-wave biosensor array consisting of five sensor elements. Two of the sensor elements were used as references. Three sensor elements were coated with RNA or DNA aptamers for specific binding of human thrombin. The affinity between the aptamers and thrombin, measured using the biosensor, was within the same range as the value of K(D) measured by filter binding experiments. Consecutive binding of the thrombin inhibitors heparin, antithrombin III or the heparin-antithrombin III complex to the immobilized thrombin molecules, and binding of a ternary complex of heparin, anithrombin III, and thrombin to aptamers was evaluated. The experiments showed attenuation of binding to thrombin due to heparin-antithrombin III complex formation. Binding of heparin activated the formation of the inhibitory complex of antithrombin III with thrombin about 2.7-fold. Binding of the DNA aptamer to exosite II appeared to inhibit heparin binding to exosite I.  相似文献   

14.
The interaction between bovine antithrombin, a plasma proteinase inhibitor, and heparin species of different molecular weights was studied. A commercial heparin preparation was divided by gel chromatography into a number of fractions with average molecular weights ranging from 6000 to 34700. Each of these fractions was further fractionated by affinity chromatography on matrix-bound antithrombin. In the latter procedure, those heparin fractions that had molecular weights lower than about 14000 were separated into three peaks. The material in the first of these was not adsorbed on the column, and the other two peaks corresponded to the low-affinity and high-affinity peaks described previously. In contrast, high-molecular-weight heparin samples gave only the low-affinity and high-affinity fractions. U.v. difference absorption studies showed that the non-adsorbed heparin fraction bound to antithrombin in solution with a binding constant at physiological ionic strength only slightly lower than that of low-affinity heparin. The division between the two fractions thus is arbitrary and only dependent on the conditions selected for the affinity-chromatography experiment. Stoicheiometries and binding constants for the binding of several high-affinity heparin species to antithrombin were determined by fluorescence titrations. High-affinity heparin fractions of equal elution positions in the beginning of the peaks of the affinity chromatographies, but with different molecular weights, showed stoicheiometries that were not experimentally distinguishable from 1:1 and also had no appreciable differences in binding constants. However, the anticoagulant activities, calculated on a molar basis, of these fractions increased markedly with molecular weight, a behaviour that thus cannot be explained by differences in the binding of the fractions to antithrombin. In contrast, high-affinity samples of similar molecular weights, which were eluted at increasing ionic strengths from matrix-linked antithrombin, were found to have an increasing proportion of chains with two binding sites for antithrombin and also to have progressively higher binding constants. These binding properties at least partly explain the increasing anticoagulant activities that were observed for these fractions.  相似文献   

15.
An electrophoretic method for the quantitation and preparation of antithrombin III-high-affinity heparin using agarose beds is described. The method allows the determination of high-affinity heparin fractions in several samples in one single step. The incubation mixture containing heparin and antithrombin III is submitted to agarose gel electrophoresis in 0.06 m barbital buffer, pH 8.6. A sharp separation between free antithrombin III, the complex antithrombin III-heparin, and free heparin occurs under these conditions. Around 30% of heparin molecules present in commerical preparations bind to antithrombin. This bound heparin has an anticoagulant activity of 240 IU. Negligible binding of other sulfated mucopolysaccharides to antithrombin III was observed. The whole procedure takes less than 6 h and can also be used as a semipreparative method for high-affinity heparin.  相似文献   

16.
Fucoidan, poly(L-fucopyranose) linked primarily alpha 1----2 with either a C3- or a C4-sulfate, is an effective anticoagulant in vitro and in vivo (Springer, G. F., Wurzel, H. A., McNeal, G. M., Jr., Ansell, N. J., and Doughty, M. F. (1957) Proc. Soc. Exp. Biol. Med. 94, 404-409). We have determined the antithrombin effects of fucoidan on the glycosaminoglycan-binding plasma proteinase inhibitors antithrombin III and heparin cofactor II. Fucoidan enhances the heparin cofactor II-thrombin reaction more than 3500-fold. The apparent second-order rate constant of thrombin inhibition by heparin cofactor II increases from 4 x 10(4) (in the absence of fucoidan) to 1.5 x 10(8) M-1 min-1 as the fucoidan concentration increases from 0.1 to 10 micrograms/ml and then decreases as fucoidan is increased above 10 micrograms/ml. The fucoidan reaction with heparin cofactor II-thrombin is kinetically equivalent to a "template model." Apparent fucoidan-heparin cofactor II and fucoidan-thrombin dissociation constants are 370 and 1 nM, respectively. The enhancement of thrombin inhibition by fucoidan, like heparin and dermatan sulfate, is eliminated by selective chemical modification of lysyl residues either of heparin cofactor II or of thrombin. The fucoidan-antithrombin III reactions with thrombin and factor Xa are accelerated maximally 285- and 35-fold at fucoidan concentrations of 30 and 500 micrograms/ml, respectively. Using human plasma and 125I-labeled thrombin in an ex vivo system, the heparin cofactor II-thrombin complex is formed preferentially over the antithrombin III-thrombin complex in the presence of 10 micrograms/ml fucoidan. Our results indicate that heparin cofactor II is activated by fucoidan in vitro and in an ex vivo plasma system and suggest that the major antithrombin activity of fucoidan in vivo is mediated by heparin cofactor II and not by antithrombin III.  相似文献   

17.
The endothelial cell surface provides a receptor for thrombin-designated thrombomodulin (TM) which regulates thrombin formation and the activity of the enzyme at the vessel wall surface by serving as a potent cofactor for the activation of protein C by thrombin. Heparin-like structures of the vessel wall have been proposed as another regulatory mechanism catalyzing the inhibition of thrombin by antithrombin III. In the present study, the interaction of antithrombin III with the thrombin-TM complex and its interference with heparin and polycations were investigated by using human components and TM isolated from the microvasculature of rabbit lung. Purified TM bound thrombin and acted as a cofactor for protein C activation. The addition of heparin (0.5 unit/mL) to the reaction mixture interfered neither with the binding of thrombin to TM nor with the activation of protein C. However, the polycations protamine (1 unit/mL) as well as polybrene (0.1 mg/mL) affected the thrombin-TM interaction. This was documented by an increase in the Michaelis constant from 8.3 microM for thrombin alone to 19.5 microM for thrombin-TM with the chromogenic substrate compound S-2238 in the presence of 1 unit/mL protamine. When the inhibition of thrombin by antithrombin III was determined, the second-order rate constant k2 = 8.4 X 10(3) M-1 s-1 increased about 8-fold in the presence of TM, implying an accelerative function of TM in this reaction. Although purified TM did not bind to antithrombin III-Sepharose, suggesting the absence of heparin-like structures within the receptor molecule, protamine reversed the accelerative effect of TM in the inhibition reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The interference of the heparin-neutralizing plasma component S protein (vitronectin) (Mr = 78,000) with heparin-catalyzed inhibition of coagulation factor Xa by antithrombin III was investigated in plasma and in a purified system. In plasma, S protein effectively counteracted the anticoagulant activity of heparin, since factor Xa inhibition was markedly reduced in comparison to heparinized plasma deficient in S protein. Using purified components in the presence of heparin, S protein induced a concentration-dependent reduction of the inhibition rate of factor Xa by antithrombin III. This resulted in a decrease of the apparent pseudo-first order rate constant by more than 10-fold at a physiological ratio of antithrombin III to S protein. S protein not only counteracted the anticoagulant activity of commercial heparin but also of low molecular weight forms of heparin (mean Mr of 4,500). The heparin-neutralizing activity of S protein was found to be mainly expressed in the range 0.2-10 micrograms/ml of high Mr as well as low Mr heparin. S protein and high affinity heparin reacted with apparent 1:1 stoichiometry to form a complex with a dissociation constant KD = 1 X 10(-8) M as determined by a functional assay. As deduced from dot-blot analysis, direct interaction of radiolabeled heparin with S protein revealed a dissociation constant KD = 4 X 10(-8) M. Heparin binding as well as heparin neutralization by S protein increased significantly when reduced/carboxymethylated or guanidine-treated S protein was employed indicating the existence of a partly buried heparin-binding domain in native S protein. Radiolabeled heparin bound to the native protein molecule as well as to a BrCN fragment (Mr = 12,000) containing the heparin-binding domain as demonstrated by direct binding on nitrocellulose replicas of sodium dodecyl sulfate-polyacrylamide gels. Kinetic analysis revealed that the heparin neutralization activity of S protein in the inhibition of factor Xa by antithrombin III could be mimicked by a synthetic tridecapeptide from the amino-terminal portion of the heparin-binding domain. These data provide evidence that the heparin-binding domain of S protein appears to be unique in binding to heparin and thereby neutralizing its anticoagulant activity in the inhibition of coagulation factors by antithrombin III. The induction of heparin binding and neutralization may be considered a possible physiological mechanism initiated by conformational alteration of the S protein molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Properties of thrombin- and elastase-modified human antithrombin III   总被引:3,自引:0,他引:3  
P Gettins  B Harten 《Biochemistry》1988,27(10):3634-3639
Proteolytically modified forms of human antithrombin III have been prepared by reaction of native antithrombin with thrombin, human neutrophil elastase, or porcine pancreatic elastase. These forms have two chains disulfide linked and are of the same molecular weight as native antithrombin III. 1H NMR spectroscopy has been used to characterize these proteins and to compare them to one another and to native antithrombin III. The three modified proteins have very similar NMR spectra and histidine residues with identical pH titration parameters, and they undergo the same spectral changes upon binding heparin. They differ from native antithrombin III in all of these respects. In addition, the proteins are much more stable than native antithrombin III. The three modified proteins behave identically as a function of temperature; at 372 K, 44 K above the unfolding temperature for native antithrombin III, the proteins are still folded and possess approximately 70 unexchanged amide protons even after several hours. The unfolding of the heparin binding domain at low concentrations of deuteriated guanidine hydrochloride seen in native thrombin III is absent in the modified forms. It is concluded that the thrombin- and elastase-modified forms of antithrombin have identical structures when allowance is made for the slightly different sites of cleavage by the two types of elastase and by thrombin. This structure is very different from that of native antithrombin III.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Oligosaccharides of well-defined molecular size were prepared from heparin by nitrous acid depolymerization, affinity chromatography on immobilized antithrombin III (see footnote on Nomenclature) and gel chromatography on Sephadex G-50. High affinity (for antithrombin III) octa-, deca-, dodeca-, tetradeca-, hexadeca- and octadeca-saccharides were prepared, as well as oligosaccharides of larger size than octadecasaccharide. The inhibition of Factor Xa by antithrombin III was greatly accelerated by all of these oligosaccharides, the specific anti-Factor Xa activity being invariably greater than 1300 units/mumol. The anti-Factor Xa activity of the decasaccharide was not significantly decreased in the presence of platelet factor 4, even at high platelet factor 4/oligosaccharide ratios. Measurable but incomplete neutralization of the anti-Factor Xa activities of the tetradeca- and hexadeca-saccharides was observed, and complete neutralization of octadeca- and larger oligo-saccharides was achieved with excess platelet factor 4. The octa-, deca-, dodeca-, tetradeca- and hexadeca-saccharides had negligible effect on the inhibition of thrombin by antithrombin III, whereas specific anti-thrombin activity was expressed by the octadeca-saccharide and by the larger oligosaccharides. An octadecasaccharide is therefore the smallest heparin fragment (prepared by nitrous acid depolymerization) that can accelerate thrombin inhibition by antithrombin III. The anti-thrombin activities of the octadecasaccharide and larger oligosaccharides were more readily neutralized by platelet factor 4 than were their anti-Factor Xa activities. These findings are compatible with two alternative mechanisms for the action of platelet factor 4, both involving the binding of the protein molecule adjacent to the antithrombin III-binding site. Such binding results in either steric interference with the formation of antithrombin III-proteinase complexes or in displacement of the antithrombin III molecule from the heparin chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号