首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the ability of bovine lactoferrin hydrolysate (LfH) to disrupt the cytoplasmic membrane of Escherichia coli O157:H7 was investigated. Lactoferrin and LfH antimicrobial activities were compared against E. coli O157:H7 and E. coli O157:H7 spheroplasts. The effect of LfH on the cytoplasmic membrane of E. coli O157:H7 cells was determined by evaluating potassium efflux (K+), dissipation of ATP and membrane potential (ΔΨ). LfH produced a rapid efflux of potassium ions, a decrease in intracellular levels of ATP coupled with a substantial increase in extracellular ATP levels and a complete dissipation of the ΔΨ. The results suggest that LfH causes a collapse of the membrane integrity by pore formation in the inner membrane, leading to the death of the cell. Moreover, the mechanism of action of LfH on E. coli O157:H7 appears to involve an interference with the inner membrane integrity based on experiments using E. coli O157:H7 spheroplasts.  相似文献   

2.
We investigated the effects of early colonizing bacteria on the colonic epithelium. We isolated dominant bacteria, Escherichia coli, Enterococcus faecalis, Lactobacillus intestinalis, Clostridium innocuum and a novel Fusobacterium spp., from the intestinal contents of conventional suckling rats and transferred them in different combinations into germfree (GF) adult rats. Animals were investigated after various times up to 21 days. Proliferative cell markers (Ki67, proliferating cell nuclear antigen, phospho-histone H3, cyclin A) were higher in rats monocolonized with E. coli than in GF at all time points, but not in rats monocolonized with E. faecalis. The mucin content of goblet cells declined shortly after E. coli administration whereas the mucus layer doubled in thickness. Fluorescence in situ hybridization analyses revealed that E. coli resides in this mucus layer. The epithelial mucin content progressively returned to baseline, following an increase in KLF4 and in the cell cycle arrest-related proteins p21CIP1 and p27KIP1. Markers of colonic differentiated cells involved in electrolyte (carbonic anhydrase II and slc26A3) and water (aquaglyceroporin3 (aqp3)) transport, and secretory responses to carbachol were modulated after E. coli inoculation suggesting that ion transport dynamics were also affected. The colonic responses to simplified microbiotas differed substantially according to whether or not E. coli was combined with the other four bacteria. Thus, proliferation markers increased substantially when E. coli was in the mix, but very much less when it was absent. This work demonstrates that a pioneer strain of E. coli elicits sequential epithelial remodeling affecting the structure, mucus layer and ionic movements and suggests this can result in a microbiota-compliant state.  相似文献   

3.
Two groups of calves were subjected to dietary stress by withholding of food beginning 1 or 14 days after inoculation with 1010 CFU of Escherichia coli O157:H7. Following treatment, neither group had a significant increase in fecal shedding of E. coli O157:H7. A third group of calves had food withheld for 48 h prior to inoculation with 107 CFU of E. coli O157:H7. These calves were more susceptible to infection and shed significantly more E. coli O157:H7 organisms than calves maintained on a normal diet.  相似文献   

4.
Weaned 3- to 4-month-old calves were fasted for 48 h, inoculated with 1010 CFU of Shiga toxin-positive Escherichia coli (STEC) O157:H7 strain 86-24 (STEC O157) or STEC O91:H21 strain B2F1 (STEC O91), Shiga toxin-negative E. coli O157:H7 strain 87-23 (Stx O157), or a nonpathogenic control E. coli strain, necropsied 4 days postinoculation, and examined bacteriologically and histologically. Some calves were treated with dexamethasone (DEX) for 5 days (3 days before, on the day of, and 1 day after inoculation). STEC O157 bacteria were recovered from feces, intestines, or gall bladders of 74% (40/55) of calves 4 days after they were inoculated with STEC O157. Colon and cecum were sites from which inoculum-type bacteria were most often recovered. Histologic lesions of attaching-and-effacing (A/E) O157+ bacteria were observed in 69% (38/55) of the STEC O157-inoculated calves. Rectum, ileocecal valve, and distal colon were sites most likely to contain A/E O157+ bacteria. Fecal and intestinal levels of STEC O157 bacteria were significantly higher and A/E O157+ bacteria were more common in DEX-treated calves than in nontreated calves inoculated with STEC O157. Fecal STEC O157 levels were significantly higher than Stx O157, STEC O91, or control E. coli; only STEC O157 cells were recovered from tissues. Identifying the rectum, ileocecal valve, and distal colon as early STEC O157 colonization sites and finding that DEX treatment enhances the susceptibility of weaned calves to STEC O157 colonization will facilitate the identification and evaluation of interventions aimed at reducing STEC O157 infection in cattle.  相似文献   

5.
《Analytical biochemistry》1987,164(2):320-330
This paper describes a highly efficient procedure for the quantitative conversion of Escherichia coli cells to spheroplasts utilizing 100- to 1000-fold less lysozyme than in the most efficient procedures used to date. The resulting spheroplasts have intact outer and inner membranes and are fully viable on agar plates. The spheroplasting procedure is a refinement of earlier procedures and enables regulation of the translocation of minute amounts of lysozyme into the periplasmic space of E. coli cells, based on a Ca2+ pretreatment, an EDTA incubation, and a heat shock. About 1000 lysozyme molecules per cell are sufficient for complete spheroplast formation (>98%). Some of the characteristics of these spheroplasts prior to and after recovery are described. It is anticipated that such viable spheroplasts will be useful in the study of fusion of gram-negative cells and other membrane systems, in the introduction of DNA and proteins into refractory gram-negative cell, and in investigating envelope-related synthesis and assembly processes.  相似文献   

6.
Several outbreaks of Escherichia coli O157:H7 infections have been associated with minimally processed leafy vegetables in the United States. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with E. coli O157:H7, the effect of mechanical, physiological, and plant disease-induced lesions on the growth of this pathogen on postharvest romaine lettuce was investigated. Within only 4 h after inoculation, the population sizes of E. coli O157:H7 increased 4.0-, 4.5-, and 11.0-fold on lettuce leaves that were mechanically bruised, cut into large pieces, and shredded into multiple pieces, respectively. During the same time, E. coli O157:H7 population sizes increased only twofold on leaves that were left intact after harvest. Also, the population size of E. coli O157:H7 was 27 times greater on young leaves affected by soft rot due to infection by Erwinia chrysanthemi than on healthy middle-aged leaves. Confocal microscopy revealed that leaf tip burn lesions, which are caused by a common physiological disorder of lettuce, harbored dense populations of E. coli O157:H7 cells both internally and externally. Investigation of the colonization of cut lettuce stems by E. coli O157:H7 showed that the pathogen grew 11-fold over 4 h of incubation after its inoculation onto the stems, from which large amounts of latex were released. The results of this study indicate that plant tissue damage of various types can promote significant multiplication of E. coli O157:H7 over a short time and suggest that harvesting and processing are critical control points in the prevention or reduction of E. coli O157:H7 contamination of lettuce.  相似文献   

7.
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars.Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation.In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.  相似文献   

8.
K. Harding  E. C. Cocking 《Protoplasma》1986,130(2-3):153-161
Summary E. coli spheroplasts can be used to deliver DNA vectors into plant protoplasts. The use of fluorescent dyes showed that 25–100% of the protoplast population was associated with 1–9 spheroplasts following incubation with several fusogens. Electron microscopy demonstrated spheroplasts attached to protoplasts via a plasma membrane protrusion after high pH/Ca2+ treatment, but PEG-high pH/Ca2+ promoted endocytosis of spheroplasts into a plasma membrane bounded vesicle. Ultrastructural profiles showed that fusion between spheroplasts and protoplasts did not occur. Immunofluorescence studies detectedE. coli antigens associated with tobacco protoplasts, and after fusogen treatment the antigens were dispersed within the peripheral cytoplasm. The elimination of residual contaminatingE. coli cells from protoplasts was achieved by lysozyme and antibiotic treatment, thus allowing DNA vector assessment in axenic culture.  相似文献   

9.
In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria.  相似文献   

10.
A plasmid-encoded enzyme reported by us to phosphorylate amikacin in a laboratory strain of Escherichia coli has been localized in the bacterial cell. More than 88% of this amikacin phosphotransferase (APH) activity was retained in spheroplasts formed by ethylenediaminetetraacetate-lysozyme treatment of an APH-containing E. coli transconguant known to form spheroplasts readily. By comparison, the spheroplasts retained 94% of deoxyribonucleic acid polymerase I and 98% of glutamyl-transfer ribonucleic acid synthetase, two internal markers, whereas less than 10% of the activity of a periplasmic marker, acid phosphatase, was present in spheroplasts. Treatment of whole cells of the transconjugant with chemical probes incapable of crossing the plasma membrane obliterated acid phosphatase activity, whereas the internal markers deoxyribonucleic acid polymerase I, glutamyl-transfer ribonucleic acid synthetase, and β-galactosidase were virtually unaffected after treatment for 5 min; more than 60% of the APH activity remained. As a control, similar chemical treatment of sonic extracts, in which enzymes were not protected by bacterial compartmentalization, produced more extensive reduction in the activities of all test enzymes, including APH. Spheroplasts preincubated with adenosine triphosphatase were shown by thin-layer chromatography to phosphorylate amikacin. Spheroplasts of cells grown in the presence of H332PO4 were shown to utilize internally generated adenosine 5′-triphosphate in the phosphorylation of amikacin. The absence of 32P-phosphorylated amikacin after incubation of [γ-32P]adenosine 5′-triphosphate with spheroplasts confirmed that exogenous adenosine 5′-triphosphate was not used in the reaction. These results suggest an internal location for APH. This conclusion has implications for the role of such enzymes in aminoglycoside resistance of gram-negative bacteria.  相似文献   

11.
An immunological method for distinguishing bacteria from spheroplasts of anE. coli strain is presented. Antisera prepared against fractions of a lysate of spheroplasts are able, after absorption of the O antibodies, to label spheroplasts but not normal bacteria by the fluorescent antibody method. The immunologic bases of the specificity are studied. By diffusion precipitation tests it was shown that spheroplasts contain at least 7 antigens, 2 of which are part of the O antigen complex of the bacterium.This investigation was supported by the Fonds National de la Recherche Scientifique. The author wishes to thand Doctor J. Salmon for useful suggestions and help in immunological methods. The technical assistance of Miss E. Ligot is gratefully acknowledged.  相似文献   

12.
Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.  相似文献   

13.
Interactions with immune responses or exposure to certain antibiotics can remove the peptidoglycan wall of many Gram-negative bacteria. Though the spheroplasts thus created usually lyse, some may survive by resynthesizing their walls and shapes. Normally, bacterial morphology is generated by synthetic complexes directed by FtsZ and MreBCD or their homologues, but whether these classic systems can recreate morphology in the absence of a preexisting template is unknown. To address this question, we treated Escherichia coli with lysozyme to remove the peptidoglycan wall while leaving intact the inner and outer membranes and periplasm. The resulting lysozyme-induced (LI) spheroplasts recovered a rod shape after four to six generations. Recovery proceeded via a series of cell divisions that produced misshapen and branched intermediates before later progeny assumed a normal rod shape. Importantly, mutants defective in mounting the Rcs stress response and those lacking penicillin binding protein 1B (PBP1B) or LpoB could not divide or recover their cell shape but instead enlarged until they lysed. LI spheroplasts from mutants lacking the Lpp lipoprotein or PBP6 produced spherical daughter cells that did not recover a normal rod shape or that did so only after a significant delay. Thus, to regenerate normal morphology de novo, E. coli must supplement the classic FtsZ- and MreBCD-directed cell wall systems with activities that are otherwise dispensable for growth under normal laboratory conditions. The existence of these auxiliary mechanisms implies that they may be required for survival in natural environments, where bacterial walls can be damaged extensively or removed altogether.  相似文献   

14.
Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening complications. Because healthy cattle are reservoirs for the bacterium, ruminant infection models have applications in analyzing the relationship between cattle and this human pathogen and in testing interventions to reduce or prevent bovine colonization with this bacterium. Current approaches often do not reliably mimic natural, long-term bovine colonization with E. coli O157:H7 in older calves and adult animals (ages that enter our food chain). Based on the recent identification of the bovine rectoanal junction mucosa as a site of E. coli O157:H7 colonization, we developed a novel rectal swab administration colonization model. We compared this method with oral dosing and direct contact transmission (Trojan) methods. E. coli O157:H7 carriage status was determined by fecal or rectoanal mucosa swab culture. High (~1010 CFU) and low (~107 CFU) oral doses of E. coli O157:H7 in sheep and cattle resulted in variable infection with the bacterium. Some animals became colonized with the bacteria and remained culture positive for several weeks, and some animals did not become colonized and rapidly cleared the bacteria in a few days. Pen mates of E. coli O157:H7 culture-positive Trojan cattle had a low infection rate and variable colonization status. However, rectal swab administration of E. coli O157:H7 to cattle resulted in consistent long-term colonization in all animals. The surprising ease with which long-term infections resulted from a single application of bacteria to the rectoanal mucosa also strongly supported this location as a site of E. coli O157:H7 colonization in cattle.  相似文献   

15.

Background

Acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) have suggested to be suitable inflammatory markers for bovine mastitis. The aim of the study was to investigate acute phase markers along with clinical parameters in two consecutive intramammary challenges with Escherichia coli and to evaluate the possible carry-over effect when same animals are used in an experimental model.

Methods

Mastitis was induced with a dose of 1500 cfu of E. coli in one quarter of six cows and inoculation repeated in another quarter after an interval of 14 days. Concentrations of acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) were determined in serum and milk.

Results

In both challenges all cows became infected and developed clinical mastitis within 12 hours of inoculation. Clinical disease and acute phase response was generally milder in the second challenge. Concentrations of SAA in milk started to increase 12 hours after inoculation and peaked at 60 hours after the first challenge and at 44 hours after the second challenge. Concentrations of SAA in serum increased more slowly and peaked at the same times as in milk; concentrations in serum were about one third of those in milk. Hp started to increase in milk similarly and peaked at 36–44 hours. In serum, the concentration of Hp peaked at 60–68 hours and was twice as high as in milk. LBP concentrations in milk and serum started to increase after 12 hours and peaked at 36 hours, being higher in milk. The concentrations of acute phase proteins in serum and milk in the E. coli infection model were much higher than those recorded in experiments using Gram-positive pathogens, indicating the severe inflammation induced by E. coli.

Conclusion

Acute phase proteins would be useful parameters as mastitis indicators and to assess the severity of mastitis. If repeated experimental intramammary induction of the same animals with E. coli is used in cross-over studies, the interval between challenges should be longer than 2 weeks, due to the carry-over effect from the first infection.  相似文献   

16.
Spheroplasts ofEscherichia coli were produced by penicillin or lysozyme-ethylenediaminetetraacetic acid and examined by the direct fluorescent-antibody staining technique. Most spheroplasts stained with somatic-O fluorescent antibody exhibited brilliant peripheral fluorescence with localized areas of irregular staining. Electron micrographs showed that these spherical structures had considerable amounts of cell wall fragments associated with them. Two strains ofE. coli employed in the present study required different concentrations of penicillin for the conversion of all cells in an exponential culture to spheroplasts. Slight differences in lysozyme sensitivity were also encountered with these strains. The direct fluorescent-antibody staining technique was effective for the rapid identification ofE. coli spheroplasts in mixed cultures.  相似文献   

17.
Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a powerful new tool to challenge mice treated with drugs or vaccines, and test the survival, dissemination, and transmission of leptospires between environment and hosts.  相似文献   

18.
Enterococcus faecalis is part of the human intestinal microbiota and an important nosocomial pathogen. It can be found in the marine environment, where it is also employed as a fecal indicator. To assess the pathogenic potential of marine E. faecalis, four strains isolated from marine sediment were analyzed for their ability to survive in human macrophages. Escherichia coli DH5α was used as a negative control. The number of adherent and intracellular bacteria was determined 2.5 h after the infection (T0) and after further 24h (T24) by CFU and qPCR counts. At T24 adherent and intracellular enterococcal CFU counts were increased for all strains, the increment in intracellular bacteria being particularly marked. No CFU of E. coli DH5α were detected. In contrast, qPCR counts of intracellular enterococcal and E. coli bacteria were similar at both time points. These findings suggest that whereas E. coli was killed within macrophages (no CFU, positive qPCR), the E. faecalis isolates not only escaped killing, but actually multiplied, as demonstrated by the increase in the viable cell population. These findings support earlier data by our group, further documenting that marine sediment can be a reservoir of pathogenic enterococci.  相似文献   

19.
Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 – 5.14) but slowly in neutral soils (pH, 6.51 – 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g−1) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.  相似文献   

20.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号