首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respirable antisense oligonucleotides (RASONs), which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.  相似文献   

2.
Respirable antisense oligonucleotides (RASONs), which attenuate specific disease-associated mRNAs, represent a new class of respiratory therapeutics with considerable potential. RASONs overcome previous obstacles that have impeded the development of antisense therapeutics targeting diseases in other organ systems. RASONs are delivered directly to the target tissue via inhalation; their uptake seems to be enhanced by cationic properties inherent in pulmonary surfactant, and, because of the markedly different target properties of mRNA and proteins, they can have very long durations of effect compared with traditional drugs targeting the protein of the same gene. RASONs contain chemical modifications that decrease their degradation by cellular nucleases. However, total insensitivity to nucleases is probably not an optimal design criterion for RASONs, because moderate nuclease sensitivity can prevent their systemic delivery, decreasing the potential for systemic toxicity. EPI-2010 is a 21-mer phosphorothioate RASON that attenuates bronchoconstriction, inflammation and surfactant depletion in preclinical models of human asthma, has a duration of effect of seven days, and seems to undergo minimal systemic delivery.  相似文献   

3.
Asthma, chronic obstructive pulmonary disease (COPD) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are characterized by neutrophilic inflammation and elevated levels of leukotriene B4 (LTB4). However, the exact role of LTB4 pathways in mediating pulmonary neutrophilia and the potential therapeutic application of LTB4 receptor antagonists in these diseases remains controversial. Here we show that a novel dual BLT1 and BLT2 receptor antagonist, RO5101576, potently inhibited LTB4-evoked calcium mobilization in HL-60 cells and chemotaxis of human neutrophils. RO5101576 significantly attenuated LTB4-evoked pulmonary eosinophilia in guinea pigs. In non-human primates, RO5101576 inhibited allergen and ozone-evoked pulmonary neutrophilia, with comparable efficacy to budesonide (allergic responses). RO5101576 had no effects on LPS-evoked neutrophilia in guinea pigs and cigarette smoke-evoked neutrophilia in mice and rats. In toxicology studies RO5101576 was well-tolerated. Theses studies show differential effects of LTB4 receptor antagonism on neutrophil responses in vivo and suggest RO5101576 may represent a potential new treatment for pulmonary neutrophilia in asthma.  相似文献   

4.
The aetiology of asthma associated with viral infection is complex. The dynamics that contribute to disease pathogenesis are multifactorial and involve overlapping molecular and cellular mechanisms, particularly the immune response to respiratory virus infection or allergen sensitization. This review summarizes the evidence associated with factors that may contribute to the development or exacerbation of asthma including age, host factors, genetic polymorphisms, altered immune responses, and aspects of viral antigen expression. This review also provides an important perspective of key events linked to the development of asthmatic disease and related pulmonary inflammation from human and animal studies, and discusses their relationship as targets for disease intervention strategies.  相似文献   

5.
Mouse models of allergen provocation and/or transgenic gene expression have provided significant insights regarding the cellular, molecular, and immune responses linked to the pathologies occurring as a result of allergic respiratory inflammation. Nonetheless, the inability to replicate the eosinophil activities occurring in patients with asthma has limited their usefulness to understand the larger role(s) of eosinophils in disease pathologies. These limitations have led us to develop an allergen-naive double transgenic mouse model that expresses IL-5 systemically from mature T cells and eotaxin-2 locally from lung epithelial cells. We show that these mice develop several pulmonary pathologies representative of severe asthma, including structural remodeling events such as epithelial desquamation and mucus hypersecretion leading to airway obstruction, subepithelial fibrosis, airway smooth muscle hyperplasia, and pathophysiological changes exemplified by exacerbated methacholine-induced airway hyperresponsiveness. More importantly, and similar to human patients, the pulmonary pathologies observed are accompanied by extensive eosinophil degranulation. Genetic ablation of all eosinophils from this double transgenic model abolished the induced pulmonary pathologies, demonstrating that these pathologies are a consequence of one or more eosinophil effector functions.  相似文献   

6.
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.  相似文献   

7.
Research into respiratory diseases has reached a critical stage and the introduction of novel therapies is essential in combating these debilitating conditions. With the discovery of the peroxisome proliferator-activated receptor and its involvement in inflammatory responses of cardiovascular disease and diabetes, attention has turned to lung diseases and whether knowledge of this receptor can be applied to therapy of the human airways. In this article, we explore the prospect of peroxisome proliferator-activated receptor-γ as a marker and treatment focal point of lung diseases such as asthma, chronic obstructive pulmonary disorder, lung cancer and cystic fibrosis. It is anticipated that peroxisome proliferator-activated receptor-γ ligands will provide not only useful mechanistic pathway information but also a possible new wave of therapies for sufferers of chronic respiratory diseases.  相似文献   

8.
Research into respiratory diseases has reached a critical stage and the introduction of novel therapies is essential in combating these debilitating conditions. With the discovery of the peroxisome proliferator-activated receptor and its involvement in inflammatory responses of cardiovascular disease and diabetes, attention has turned to lung diseases and whether knowledge of this receptor can be applied to therapy of the human airways. In this article, we explore the prospect of peroxisome proliferator-activated receptor-γ as a marker and treatment focal point of lung diseases such as asthma, chronic obstructive pulmonary disorder, lung cancer and cystic fibrosis. It is anticipated that peroxisome proliferator-activated receptor-γ ligands will provide not only useful mechanistic pathway information but also a possible new wave of therapies for sufferers of chronic respiratory diseases.  相似文献   

9.
Evidence for a role of diet in asthma and chronic obstructive pulmonary disease (COPD) has been accumulating rapidly over the past decade. Associations have been reported between the intake of fruit, fish, antioxidant vitamins, fatty acids, sodium or magnesium, and indicators of asthma and COPD. Several issues need to be addressed before causality of these associations can be established. The role of diet in the development of disease and the induction time and reversibility of the effect needs further investigation. The role of smoking habits in the relation of diet and respiratory disease also needs to be elucidated. Nevertheless, based on the available evidence, dietary guidelines could be proposed for the primary and secondary prevention of asthma and COPD that are in line with existing dietary guidelines for the prevention of coronary heart disease and cancer.  相似文献   

10.
11.
Recruitment of eosinophils has long been recognized as a hallmark of the inflammatory response in asthma. However, the functions of this population of cells in host defense remain poorly understood. Eosinophils play an important part in the inflammatory response and have key regulatory roles in the afferent arm of the immune response. More recently, eosinophils have been demonstrated to participate in host defense against respiratory viruses. The specific contributions of eosinophils to the pathophysiology of asthma remain controversial. However, the balance of evidence indicates that they have a significant role in the disease, suggesting that they may be appropriate targets for therapy. Towards this end, a novel intervention of considerable potential interest is the use of an antibody directed against the beta common chain of the receptor for interleukin-3, interleukin-5 and granulocyte-macrophage colony-stimulating factor. However, eliminating eosinophils may not be a risk-free therapeutic strategy, as there is potentially an increased likelihood of respiratory viral infections. This may predispose to the development of acute exacerbations of asthma, an outcome that would have significant clinical implications.  相似文献   

12.
Chronic respiratory diseases account for high morbidity and mortality, with asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) being the most prevalent globally. Even though the diseases increase in prevalence, the exact underlying mechanisms have still not been fully understood. Despite their differences in nature, pathophysiologies, and clinical phenotypes, a growing body of evidence indicates that the presence of lung microbiota can shape the pathogenic processes underlying chronic inflammation, typically observed in the course of the diseases. Therefore, the characterization of the lung microbiota may shed new light on the pathogenesis of these diseases. Specifically, in chronic respiratory tract diseases, the human microbiota may contribute to the disease’s development and severity. The present review explores the role of the microbiota in the area of chronic pulmonary diseases, especially COPD, asthma, and CF.  相似文献   

13.
Equine recurrent airway obstruction (RAO) is a naturally occurring respiratory disease in horses with many similarities to human asthma and, as a result, has been used as an animal model of this disease. Oxidative stress has been demonstrated to occur in a range of respiratory diseases in human beings including asthma. Quantitatively, horses have a greater non-enzymatic antioxidant capacity in the pulmonary epithelial lining fluid compared to human beings due to high ascorbic acid concentrations, which reflects their ability to synthesise ascorbic acid. Consequently, a greater oxidative load is likely to be required to induce oxidative stress in horses compared to human beings. Induction of acute neutrophilic airway inflammation in RAO horses by exposure to organic dust does not result in marked pulmonary oxidative stress. However, with a more prolonged inflammatory response, the antioxidant capacity is depleted and oxidative stress occurs. Despite the clear evidence of oxidative stress in RAO, there is currently limited data linking oxidative stress with a causal role in the development of the pathophysiological features of RAO, namely airway obstruction, airway hyper-responsiveness, airway inflammation and mucus accumulation. However, pathways do exist whereby oxidants could potentially augment the production of important mediators in RAO. Further work is required to ascertain the benefits of antioxidant supplementation in RAO and to determine the role of oxidative stress in the pathogenesis of the disease. Given the similarities with human asthma, results from RAO horses could enhance the understanding of the role of oxidative stress in human asthma.  相似文献   

14.
Aerosol gene therapy   总被引:9,自引:0,他引:9  
Gene therapy is a novel field of medicine that holds tremendous therapeutic potential for a variety of human diseases. Targeting of therapeutic gene delivery vectors to the lungs can be beneficial for treatment of various pulmonary diseases such as lung cancer, cystic fibrosis, pulmonary hypertension, alpha-1 antitrypsin deficiency, and asthma. Inhalation therapy using formulations delivered as aerosols targets the lungs through the pulmonary airways. The instant access and the high ratio of the drug deposited within the lungs noninvasively are the major advantages of aerosol delivery over other routes of administration. Delivery of gene formulations via aerosols is a relatively new field, which is less than a decade old. However, in this short period of time significant developments in aerosol delivery systems and vectors have resulted in major advances toward potential applications for various pulmonary diseases. This article will review these advances and the potential future applications of aerosol gene therapy technology.  相似文献   

15.
Using natural killer T (NKT) cell-deficient mice, we show here that allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma, does not develop in the absence of V(alpha)14i NKT cells. The failure of NKT cell-deficient mice to develop AHR is not due to an inability of these mice to produce type 2 T-helper (Th2) responses because NKT cell-deficient mice that are immunized subcutaneously at non-mucosal sites produce normal Th2-biased responses. The failure to develop AHR can be reversed by the adoptive transfer of tetramer-purified NKT cells producing interleukin (IL)-4 and IL-13 to Ja281(-/-) mice, which lack the invariant T-cell receptor (TCR) of NKT cells, or by the administration to Cd1d(-/-) mice of recombinant IL-13, which directly affects airway smooth muscle cells. Thus, pulmonary V(alpha)14i NKT cells crucially regulate the development of asthma and Th2-biased respiratory immunity against nominal exogenous antigens. Therapies that target V(alpha)14i NKT cells may be clinically effective in limiting the development of AHR and asthma.  相似文献   

16.
Eosinophils are uniquely endowed with an arsenal of enzymes that enable them to generate an array of reactive oxidants and diffusible radical species. The formidable arsenal at their disposal likely evolved because of the central role these phagocytes play in combating invading helminths and other large metazoan pathogens. Although these leukocytes constitute an essential component of the effector limb of host defenses, they also are implicated in contributing to inflammatory tissue injury. The growing prevalence and severity of asthma, a respiratory disease characterized by recruitment and activation of eosinophils in the airways of affected individuals, has focused research efforts on elaborating the many potential mechanisms through which eosinophils may contribute to tissue injury and oxidative modification of biological targets in asthma. Eosinophil activation is strongly suspected as playing a contributory role in the pathogenesis of asthma. Accordingly, an understanding of the basic chemical pathways available to the leukocytes for generating specific reactive oxidants and diffusible radical species in vivo is required. In the following review, recent progress in the elaboration of specific mechanisms through which eosinophils generate oxidants and other reactive species are discussed. The potential contributions of these intermediates to modification of biological targets during asthma are described. Particular emphasis is placed upon the secreted hemoprotein eosinophil peroxidase (EPO), a central participant in generation of reactive oxidants and diffusible radical species by the phagocytes.  相似文献   

17.
Although recent regulatory approval of splice-switching oligonucleotides (SSOs) for the treatment of neuromuscular disease such as Duchenne muscular dystrophy has been an advance for the splice-switching field, current SSO chemistries have shown limited clinical benefit due to poor pharmacology. To overcome limitations of existing technologies, we engineered chimeric stereopure oligonucleotides with phosphorothioate (PS) and phosphoryl guanidine-containing (PN) backbones. We demonstrate that these chimeric stereopure oligonucleotides have markedly improved pharmacology and efficacy compared with PS-modified oligonucleotides, preventing premature death and improving median survival from 49 days to at least 280 days in a dystrophic mouse model with an aggressive phenotype. These data demonstrate that chemical optimization alone can profoundly impact oligonucleotide pharmacology and highlight the potential for continued innovation around the oligonucleotide backbone. More specifically, we conclude that chimeric stereopure oligonucleotides are a promising splice-switching modality with potential for the treatment of neuromuscular and other genetic diseases impacting difficult to reach tissues such as the skeletal muscle and heart.  相似文献   

18.
We demonstrate that human electrophysiological recordings of the local field potential (LFP) from intracranial electrodes, acquired from a variety of cerebral regions, show a ubiquitous 1/f2 scaling within the power spectrum. We develop a quantitative model that treats the generation of these fields in an analogous way to that of electronic shot noise, and use this model to specifically address the cause of this 1/f2 Brownian noise. The model gives way to two analytically tractable solutions, both displaying Brownian noise: 1) uncorrelated cells that display sharp initial activity, whose extracellular fields slowly decay in time and 2) rapidly firing, temporally correlated cells that generate UP-DOWN states.  相似文献   

19.
Abstract

Equine recurrent airway obstruction (RAO) is a naturally occurring respiratory disease in horses with many similarities to human asthma and, as a result, has been used as an animal model of this disease. Oxidative stress has been demonstrated to occur in a range of respiratory diseases in human beings including asthma. Quantitatively, horses have a greater non-enzymatic antioxidant capacity in the pulmonary epithelial lining fluid compared to human beings due to high ascorbic acid concentrations, which reflects their ability to synthesise ascorbic acid. Consequently, a greater oxidative load is likely to be required to induce oxidative stress in horses compared to human beings. Induction of acute neutrophilic airway inflammation in RAO horses by exposure to organic dust does not result in marked pulmonary oxidative stress. However, with a more prolonged inflammatory response, the antioxidant capacity is depleted and oxidative stress occurs. Despite the clear evidence of oxidative stress in RAO, there is currently limited data linking oxidative stress with a causal role in the development of the pathophysiological features of RAO, namely airway obstruction, airway hyper-responsiveness, airway inflammation and mucus accumulation. However, pathways do exist whereby oxidants could potentially augment the production of important mediators in RAO. Further work is required to ascertain the benefits of antioxidant supplementation in RAO and to determine the role of oxidative stress in the pathogenesis of the disease. Given the similarities with human asthma, results from RAO horses could enhance the understanding of the role of oxidative stress in human asthma.  相似文献   

20.
Excessive airway mucin production contributes to airway obstruction in lung diseases such as asthma and chronic obstructive pulmonary disease. Respiratory infections, such as atypical bacterium Mycoplasma pneumoniae (Mp), have been proposed to worsen asthma and chronic obstructive pulmonary disease in part through increasing mucin. However, the molecular mechanisms involved in infection-induced airway mucin overexpression remain to be determined. TLRs have been recently shown to be a critical component in host innate immune response to infections. TLR2 signaling has been proposed to be involved in inflammatory cell activation by mycoplasma-derived lipoproteins. In this study, we show that TLR2 signaling is critical in Mp-induced airway mucin expression in mice and human lung epithelial cells. Respiratory Mp infection in BALB/c mice activated TLR2 signaling and increased airway mucin. A TLR2-neutralizing Ab significantly reduced mucin expression in Mp-infected BALB/c mice. Furthermore, Mp-induced airway mucin was abolished in TLR2 gene-deficient C57BL/6 mice. Additionally, Mp was shown to increase human lung A549 epithelial cell mucin expression, which was inhibited by the overexpression of a human TLR2 dominant-negative mutant. These results clearly demonstrate that respiratory Mp infection increases airway mucin expression, which is dependent on the activation of TLR2 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号