首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Brief exposure to the protein neurotoxin, β-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labeled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes.In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial prepartions (3.3 ± 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 ± 0.05 pmol/mg). It is also shown that the labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude the β-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

2.
The binding and phospholipase A2 activity of an 11,000-dalton beta-bungarotoxin, isolated from Bungarus multicincutus venom, have been characterized using rat brain subcellular fractions as substrates. 125I-labeled beta-bungarotoxin binds rapidly (k = 0.14 min-1 and 0.11 min-1), saturably (Vmax = 130.1 +/- 5.0 fmoles/mg and 128.2 +/- 7.1) fmoles/mg), and with high affinity (apparent Kd = 0.8 +/- 0.1 nM and 0.7 +/- 0.1 nM) to rat brain mitochondria and synaptosomal membranes, respectively, but not to myelin. The binding to synaptosomal membranes is inhibited by divalent cations and by pretreatment with trypsin. The binding results suggest that the toxin binds to specific protein receptor sites on presynpatic membranes. The 11,000-dalton toxin rapidly hydrolyzes synaptosomal membrane phospholipids to lysophosphatides and manifests relative substrate specificity in the order phosphatidyl ethanolamine greater than phosphatidyl choline greater than phosphatidyl serine. These results indicate that the 11,000-dalton beta-bungarotoxin is a phospholipase A2 and can use presynaptic membrane phospholipids as substrates. The binding, phospholipase activity and other biological properties of the 11,000-dalton toxin are contrasted with those of the beta-bungarotoxin found in highest concentration in the venom (the 22,000-dalton beta-bungarotoxin), and the two toxins are shown to have qualitatively similar properties. Finally the results are shown to support the hypothesis that beta-bungarotoxins act in a two-step fashion to inhibit transmitter release: first, by binding to a protein receptor site on the presynatic membrane associated with Ca2+ entry, and second, by perturbing through enzymatic hydrolyses the phospholipid matrix of the membrane and thereby causing an increase in passive Ca2+ permeability.  相似文献   

3.
R R Schmidt  H Betz  H Rehm 《Biochemistry》1988,27(3):963-967
The presynaptically active snake venom neurotoxin beta-bungarotoxin (beta-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K+ channels. Here we show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of 125I-labeled beta-Butx to chick and rat brain membranes with apparent Ki values of 180 nM and 1100 nM, respectively. The mechanism of inhibition by MCD peptide is noncompetitive, as is inhibition of 125I-beta-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. Beta-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of 125I-beta-Butx by lowering its affinity to brain membranes.  相似文献   

4.
1. beta-Bungarotoxin, a presynaptically active neurotoxin from the venom of Bungarus multicinctus, was radiolabelled with 125I and its binding to synaptic membranes from rat brain was analyzed. The interaction of these binding sites with those for dendrotoxin (a convulsant polypeptide from mamba venom) and mast-cell-degranulating peptide (from bee venom) was examined in the light of the known effects of all three toxins on voltage-dependent K+ currents. 2. When measured in Krebs/phosphate buffer, the binding appeared monotonic at low concentrations of radioiodinated beta-bungarotoxin (Kd 0.4 nM; Bmax 0.42 pmol/mg protein); higher concentrations of labelled toxin revealed an additional binding component of lower affinity, but computer analysis of the data failed to provide well-defined estimates of its Kd and Bmax values. 3. Equilibrium binding experiments conducted in imidazole-based buffers yielded distinctly biphasic Scatchard plots; computer analysis of the data revealed two populations of sites [Kd 0.26 (+/- 0.30) nM and 6.14 (+/- 5.68) nM; Bmax 0.16 (+/- 0.20) and 2.65 (+/- 1.21) pmol/mg protein]. 4. In Krebs medium, beta-bungarotoxin was a very weak antagonist of the binding of 125I-labelled dendrotoxin. In imidazole medium, however, the efficacy of the inhibition was markedly increased; analysis of this inhibition showed it to be non-competitive. 5. Dendrotoxin inhibited the binding of radioiodinated beta-bungarotoxin in Krebs medium with high potency, although the interaction was by a complex, non-competitive mechanism. 6. Mast-cell-degranulating peptide inhibited non-competitively the binding of both radiolabelled dendrotoxin and beta-bungarotoxin but with relatively low potency. 7. A speculative schematic model of the dendrotoxin/beta-bungarotoxin/mast-cell-degranulating peptide binding component(s) is proposed. Findings are discussed in terms of the likely involvement of these sites with voltage-dependent K+-channel proteins.  相似文献   

5.
Studies were conducted on the properties of 125I-labeled alpha-bungarotoxin binding sites on cellular membrane fragments derived from the PC12 rat pheochromocytoma. Two classes of specific toxin binding sites are present at approximately equal densities (50 fmol/mg of membrane protein) and are characterized by apparent dissociation constants of 3 and 60 nM. Nicotine and d-tubocurarine are among the most potent inhibitors of high-affinity toxin binding. The affinity of high-affinity toxin binding sites for nicotinic cholinergic agonists is reversibly or irreversibly decreased, respectively, on treatment with dithiothreitol or dithiothreitol and N-ethylmaleimide. The nicotinic receptor affinity reagent bromoacetylcholine irreversibly blocks high-affinity toxin binding to PC12 cell membranes that have been treated with dithiothreitol. Two polyclonal antisera raised against the nicotinic acetylcholine receptor from Electrophorus electricus inhibit high-affinity toxin binding. These detailed studies confirm that curaremimetic neurotoxin binding sites on the PC12 cell line are comparable to toxin binding sites from neural tissues and to nicotinic acetylcholine receptors from the periphery. Because toxin binding sites are recognized by anti-nicotinic receptor antibodies, the possibility remains that they are functionally analogous to nicotinic receptors.  相似文献   

6.
Binding of 125I-labelled tetanus toxin to rat brain membranes in 25 mM-Tris/acetate, pH 6.0, was saturable and there was a single class of high-affinity site (KD 0.26-1.14 nM) present in high abundance (Bmax. 0.9-1.89 nmol/mg). The sites were largely resistant to proteolysis and heating but were markedly sensitive to neuraminidase. Trisialogangliosides were effective inhibitors of toxin binding (IC50 10 nM) and trisialogangliosides inserted into membranes lacking a toxin receptor were able to bind toxin with high affinity (KD 2.6 nM). The results are consistent with previous studies and the hypothesis that di- and trisialogangliosides act as the primary receptor for tetanus toxin under these conditions. In contrast, when toxin binding was assayed in Krebs-Ringer buffer, pH 7.4, binding was greatly reduced, was non-saturable and competition binding studies showed evidence for a small number of high-affinity sites (KD 0.42 nM, Bmax. 0.90 pmol/mg) and a larger number of low-affinity sites (KD 146 nM, Bmax. 179 pmol/mg). Treatment of membranes with proteinases, heat, and neuraminidase markedly reduced binding. Trisialogangliosides were poor inhibitors of toxin binding (IC50 11.0 microM), and trisialogangliosides inserted into membranes bound toxin with low affinity. The results suggest that in physiological buffers tetanus toxin binds with high affinity to a protein receptor, and that gangliosides represent only a low-affinity site.  相似文献   

7.
The binding of human 125I-labeled 'anionic polypeptidic fraction' (APF) to purified rat liver plasma membranes was studied. The dissociation constant for this binding was 3.0 micrograms protein/mg membrane protein. Binding was competitively inhibited by unlabeled human APF, but not by human LDL (low density lipoproteins). When unlabeled HDL3 was added, binding of labeled APF was competitively reduced to a level between that of unlabeled APF and unlabeled LDL. Experiments with cultured rat hepatocytes confirmed those obtained with liver membranes and suggested the presence in rat liver of saturable APF-binding sites which seem to be specific for APF. The physiologic significance of these APF binding sites is discussed in relation to the fate of cholesterol in the liver.  相似文献   

8.
There is good evidence that high density lipoprotein (HDL) interacts with high affinity sites present on hepatocytes. The precise nature of the ligand recognized by putative HDL receptors remains controversial, although there is a consensus that apolipoprotein AI (apoAI) is involved. This suggestion would be strengthened if a biologically active site demonstrating a high affinity for the receptor could be isolated. Cyanogen bromide fragments (CF) of apoAI (CF1-CF4) were complexed with phospholipid, and their ability to associate with the receptor was compared in various binding studies. Careful analysis of the concentration-dependent association of 125I-labeled dimyristoyl phosphatidylcholine (DMPC) recombinants to rat liver plasma membranes revealed high and low affinity binding components. As all DMPC recombinants displayed the low affinity binding component, it was postulated that this interaction was independent of the protein present in the particle and may well represent a lipid-lipid or lipid-protein association with the membranes. Only 125I-labeled CF4.DMPC displayed a high affinity binding component with similar Kd and Bmax (8 x 10(-9) M, 1.6 x 10(-12) mol/mg plasma membrane protein) to that of 125I-labeled AI.DMPC (7 x 10(-9), 1.4 x 10(-12) mol/mg plasma membrane protein). Similarly, egg yolk phosphatidylcholine complexes containing CF4 (CF4.egg PC) showed higher affinity binding than CF1-egg yolk phosphatidylcholine complexes confirming the results obtained with DMPC complexes. Furthermore, ligand blotting studies showed that only 125I-labeled CF4.DMPC associated specifically with HB1 and HB2, two HDL binding proteins recently identified in rat liver plasma membranes. We conclude that a region within the carboxyl-terminus of apoAI is responsible for the interaction with putative HDL receptors present in rat liver plasma membranes.  相似文献   

9.
Studies were conducted on curaremimetic neurotoxin binding to the nicotinic acetylcholine receptor present on membrane fractions derived from the human medulloblastoma clonal line, TE671. High-affinity binding sites (KD = 2 nM for 1-h incubation at 20 degrees C) and low-affinity binding sites (KD = 40 nM) for 125I-labeled alpha-bungarotoxin are present in equal quantities (60 fmol/mg membrane protein). The kinetically determined dissociation constant for high-affinity binding of toxin is 0.56 nM (k1 = 6.3 X 10(-3) min-1 nM-1; k-1 = 3.5 X 10(-3) min-1) at 20 degrees C. Nicotine, d-tubocurarine, and acetylcholine are among the most effective inhibitors of high-affinity toxin binding. The quantity of toxin binding sites and their affinity for cholinergic agonists is sensitive to reduction, alkylation, and/or oxidation of membrane sulfhydryl residues. High-affinity toxin binding sites that have been subjected to reaction with the sulfhydryl reagent dithiothreitol are irreversibly blocked by the nicotinic receptor affinity reagent bromoacetylcholine. High-affinity toxin binding is inhibited in the presence of either of two polyclonal antisera or a monoclonal antibody raised against nicotinic acetylcholine receptors from fish electric tissue. Taken together, these results indicate that curaremimetic neurotoxin binding sites on membrane fractions of the TE671 cell line share some properties with nicotinic acetylcholine receptors of peripheral origin and with toxin binding sites on other neuronal tissues.  相似文献   

10.
Rat brain cortex membranes bind to a conjugate of substance P and 125I-labeled Bolton-Hunter reagent, and this binding can be inhibited by a low concentration of substance P (Kd = 1.2 +/- 0.4 X 10(-8) M). This binding is reversible and saturable (0.5 +/- 0.1 pmol of binding sites/mg of protein). Fragments of substance P as small as the carboxyl-terminal hexapeptide can inhibit the binding although their potency decreases with the decrease in the length of the peptides. The binding affinities of smaller peptides or peptides in which the carboxyl-terminal amide or amino acids are removed are drastically reduced. Biologically active analogs of substance P, physalaemin, eledoisin, substance P methyl ester, [D-Ala0]hepta(5-11)substance P, kassinin, and the eledoisin-related hexapeptide also can inhibit the binding. However, the binding is not inhibited by polypeptides structurally unrelated to substance P or by amine hormones/neurotransmitters. The binding affinities of biologically active peptides to rat brain cortex membranes are almost identical with their affinities for rat parotid cells which we previously determined. Furthermore, the recently described substance P antagonist, [D-Pro, D-Trp]substance P, inhibits the binding of the 125I-labeled substance P derivative to brain cortex membranes and to parotid cells equally well. These results suggest that the substance P receptors in the brain cortex and the parotid gland are similar. The brain cortex membrane binding of the 125I-labeled substance P derivative can be inhibited by micromolar concentrations of GTP, GDP, and their analogs. ITP and IDP were less active. Adenine and pyridine nucleotides were inactive.  相似文献   

11.
Dendrotoxin (DTX), an Mr 7000 convulsant polypeptide from the venom of Dendroaspis angusticeps, or its facilitatory homologues act through blockade of certain voltage-sensitive K+ currents in a variety of neurons. High-affinity acceptors for DTX have been demonstrated in synaptic plasma membranes of rat or chick brain, and a fraction of these avidly bind beta-bungarotoxin (beta-BuTX), a presynaptically active protein whose lighter B polypeptide is homologous to this toxin. Extraction of rat synaptic plasma membranes using Triton X-100 in K+-containing buffer yielded binding sites with KD values of approximately 0.5 and 0.7 nM for 125I-labeled DTX and beta-BuTX, respectively. The content of high-affinity sites obtained for beta-BuTX, including the contribution of a lower affinity component, approximates to the Bmax (approximately 1.3 pmol/mg of protein) obtained for the apparent single set of DTX acceptors. On solubilization, the pharmacological specificity of the acceptor for neurotoxic DTX congeners was retained. 125I-beta-BuTX binding (2.1 nM) was blocked efficaciously by DTX (IC50 = 1.6 nM) while the binding of 2.1 nM 125I-DTX was inhibited completely by beta-BuTX (IC50 = 25 nM); the lower potency of the latter could relate to the noncompetitive nature of the mutual competition and to the presence of high- and low-affinity sites for beta-BuTX. On gel filtration, or sedimentation analysis in H2O/sucrose and 2H2O/sucrose gradients, one peak of DTX binding activity was observed, and this was inhibitable by beta-BuTX. From the hydrodynamic properties of the acceptor/detergent/lipid complex (s20,w = 13.2 S; Stokes radius = 8.6 nm), a molecular weight of 405,000-465,000 was estimated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Dendrotoxin, a snake-venom polypeptide, is a potent convulsant that facilitates transmitter release apparently by inhibition of voltage-sensitive K+ channels responsible for A-currents. A biologically active 125I-iodinated derivative of this toxin was prepared and used to characterize kinetically homogeneous non-interacting high-affinity acceptors in synaptic membranes from rat cerebral cortex and hippocampus. Binding of radiolabelled toxin from Dendroaspis angusticeps to its membrane acceptor protein was inhibitable by homologous polypeptides from other mamba snakes; most importantly, their rank order of potency was identical with that for their central neurotoxicities in rats, furnishing evidence for involvement of this binding component in the convulsive symptoms observed. Beta-Bungarotoxin, a presynaptically acting neurotoxin whose action on neurotransmitter release at the neuromuscular junction and effects on brain synaptosomes are antagonized by dendrotoxin, was only able to inhibit the binding of the 125I-labelled toxin with low efficacy, although dendrotoxin apparently interacts avidly with the acceptor sites for beta-bungarotoxin. This weak interaction of beta-bungarotoxin with the acceptor was not attributable to its phospholipolytic action. Other neurotoxins and ion-channel antagonists failed to affect the binding of dendrotoxin. The findings presented here, together with recent electrophysiological data, favour the interpretation that dendrotoxin binds to a membrane protein comprising, or closely associated with, this one group of voltage-dependent K+ channels.  相似文献   

13.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

14.
We described a protocol for purification of bovine brain membranes suitable to study the binding of iodinated basic fibroblast growth factor (FGF) to bovine brain membrane preparation. The binding of 125I basic FGF to brain membranes reached equilibrium within 30 min at 20 degrees C, was reversible, and displaced by an excess of unlabeled basic FGF. Scatchard analysis of the data revealed that two classes of binding sites could be detected with an apparent Kd of 30 pM and a capacity of 0.24 pmol/mg of membrane proteins for the high affinity binding site and Kd of 3 nM with a capacity of 51 pmol/mg of membrane proteins for the low affinity binding site. Cross-linking experiments of labeled basic FGF to brain membrane receptor yield the formation of a single major complex with an apparent molecular mass of 170 kDa which is similar to the value obtained for the high affinity binding site for basic FGF on target cells in tissue culture. Hence these data present the first biochemical evidence suggesting that membrane purified from bovine brain contain two classes of specific binding sites for basic FGF and confirm results described with cells grown in vitro.  相似文献   

15.
The binding of ethanol to rat liver mitochondria is shown to be saturable at physiologically relevant ethanol concentrations. This effect is reversible and is not observed in extracted mitochondrial phospholipids. Brief exposure of the mitochondria to heat abolishes saturable ethanol binding. Previously, saturable ethanol binding was reported in rat liver microsomes. Taken together, the studies indicate that saturable ethanol binding motifs may be widespread in cellular membranes. The possibility is raised that incomplete expression of the hydrophobic effect in membrane assembly results in the expression of amphipathic packing defects which display an affinity for and a sensitivity to ethanol. The presence of saturable binding modalities is reconciled with the long-standing consensus on the biodistribution of ethanol - that ethanol's interactions with tissue are negligible - on the grounds that the affinities of ethanol and of water for membranes are similar; consequently, free ethanol concentrations are insensitive to the presence of tissue despite significant ethanol binding. A fraction of the binding sites possess submillimolar affinities for ethanol consistent with published functional studies, both in vitro and in vivo, that reported submillimolar efficacies for ethanol.  相似文献   

16.
Synapsin I, a major neuron-specific substrate for cAMP-dependent and Ca2+/calmodulin-dependent protein kinases, associates in in vitro assays with brain integral membrane protein site(s) distinct from secretory vesicles and with the neurofilament Mr = 68,000 subunit. The membrane sites for synapsin involve protein(s) and are likely to have physiological relevance since the binding of 125I-labeled synapsin is abolished by digestion with chymotrypsin, is displaced by unlabeled synapsin, is of high affinity (KD = 10 nM), and has a capacity (42 pmol/mg membrane protein) that is comparable to the amount of synapsin in brain, optimal binding occurs at physiological pH (6.8-7.2) and salt concentrations (50 mM), and synapsin binding to membranes is inhibited by phosphorylation with Ca2+/calmodulin-dependent protein kinase. The brain membrane protein sites for synapsin are not due to synaptic vesicles, since synaptic vesicles do not sediment under the conditions of the binding assay. Association between synapsin and the Mr = 68,000 neurofilament subunit has also been demonstrated. The binding of synapsin with the neurofilament subunit is specific since this binding interaction is saturable, with a 1:1 stoichiometry, the binding involves only certain proteolytically derived domains of synapsin, and is therefore not a simple electrostatic interaction between the basic domains of synapsin and the acidic regions in the neurofilament subunit, and Ca2+/calmodulin-dependent phosphorylation of synapsin inhibits this interaction. Synapsin promotes cross-linking of synaptic vesicles to brain membranes, and these complexes are reduced by phosphorylation of synapsin. This interconnecting function of synapsin may be a general characteristic of synapsin binding, with a membrane (synaptic vesicle or nonsecretory vesicle)-bound synapsin associating with microtubules, neurofilaments, or spectrin.  相似文献   

17.
Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.  相似文献   

18.
Ganglioside expression and tetanus toxin binding were studied in the rat pheochromocytoma cell line PC12. Seven ganglioside species were readily detected in extracts of PC12 cells; two were identified as tri- and tetrasialogangliosides, which are common brain constituents but unusual components of neuronal cell lines. Carbohydrate composition, acid and enzyme hydrolyses, and mass spectral analysis revealed that the major species is GT 1b, a predominant mammalian brain ganglioside previously reported to support high affinity tetanus toxin binding (Rogers, T. B., and Snyder, S. H. (1981) J. Biol. Chem. 256, 2402-2407). Direct binding of 125I-tetanus toxin to PC12 gangliosides on TLC plates revealed selective binding to the tri- and tetrasialogangliosides. Radioiodinated toxin also bound with high affinity to intact PC12 cells or their isolated membranes. The binding affinity (Kd = 1.25 nM), density of receptors (Bmax = 238 pmol/mg of membrane protein), and dependence on pH, ionic strength, and temperature were similar to those previously reported for toxin binding to rat brain synaptic membranes. Differentiation of PC12 cells caused an increase in expression of the tri- and tetrasialogangliosides and a closely matched increase in tetanus toxin binding to cell membranes. These data provide evidence that complex gangliosides may act as tetanus toxin receptors, and demonstrate the utility of the PC12 cell line for studies of tetanus toxicity and complex ganglioside expression.  相似文献   

19.
To study the molecular basis of differences in the insecticidal spectrum of Bacillus thuringienesis delta-endotoxins, we have performed binding studies with three delta-endotoxins on membrane preparations from larval insect mid-gut. Conditions for a standard binding assay were established through a detailed study of the binding of 125I-labeled Bt2 toxin, a recombinant B. thuringiensis delta-endotoxin, to brush border membrane vesicles of Manduca sexta. The toxins tested (Bt2, Bt3 and Bt73 toxins) are about equally toxic to M. sexta but differ in their toxicity against Heliothis virescens. Equilibrium binding studies revealed saturable, high-affinity binding sites on brush border membrane vesicles of M. sexta and H. virescens. While the affinity of the three toxins was not significantly different on H. virescens vesicles, marked differences in binding site concentration were measured which reflected the differences in in vivo toxicity. Competition experiments revealed heterogeneity in binding sites. For H. virescens, a three-site model was proposed. In M. sexta, one population of binding sites is shared by all three toxins, while another is only recognized by Bt3 toxin. Several other toxins, non-toxic or much less toxic to M. sexta than Bt2 toxin, did not or only marginally displace binding of 125I-labeled Bt2 toxin in this insect. No saturable binding of this toxin was observed to membrane preparations from tissues of several non-susceptible organisms. Together, these data provide new evidence that binding to a specific receptor on the membrane of gut epithelial cells is an important determinant with respect to differences in insecticidal spectrum of B. thuringiensis insecticidal crystal proteins.  相似文献   

20.
A presynaptic neurotoxin isolated from the venom of the Central Asia spider karakurt (Black Widow Spider, Latrodectus mactans tredecimguttatus) is shown to consist of two identical subunits of mol. weight about 118 kDa. The iodinated neurotoxin binds to the rat brain synaptosomal plasma membranes with Kd 0.1 nM (Bmax 0.1 pmol/mg of protein) at 37 degrees C, and with Kd 0.35 nM (Bmax 0.2 pmol/mg of protein) at 5 degrees C. At intermediate temperatures both types of receptors are detectable. It is supposed that the dimeric form of the toxin interacts with a single class of receptors possessing lateral mobility in the membrane. By the use of different bifunctional reagents it is revealed that the neurotoxin interacts with a presynaptic membrane protein of mol. weight 95 kDa. A protein of the same size accompanied by a 71 kDa protein was isolated by the affinity chromatography of solubilized synaptosomal membranes on the absorbent, containing immobilized neurotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号