首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of Candida albicans to adhere to subendothelial extracellular matrix (ECM) may be important in the pathogenesis of disseminated candidiasis. ECM proteins, such as fibronectin, laminin, and types I and IV collagen bind C. albicans avidly. These proteins all possess heparin-binding domains. The influence of the glycosaminoglycans (GAGS) including heparin, heparan sulfate and dextran sulfate on C. albicans adherence to subendothelial ECM and ECM proteins was studied. It was demonstrated that the GAGS inhibited C. albicans adherence to ECM and ECM proteins. This possibly occurred by the GAGS binding to the ECM proteins and, in so doing, masking a preferred ligand for C. albicans adherence.  相似文献   

2.
Candida albicans yeasts adhered avidly to extracellular matrix (ECM) proteins, type IV collagen, laminin, and fibronectin immobilized on plastic. Type IV collagen showed an increase of adherence of 400% above control values; laminin, 300%; and fibronectin, 150%. In addition, all three (in quantities of 0.02-200 micrograms/well of a culture tray) bound yeasts in a dose-response fashion. Adherence was inhibited when the proteins were preincubated with specific antibody, except with type IV collagen. Soluble laminin or fibronectin inhibited yeast adherence to the same proteins by 36 and 94%, respectively. Soluble fibronectin bound to the yeast surface and in so doing inhibited subsequent yeast adherence to fibronectin by 66%. By comparison, Candida albicans yeasts adhered in smaller numbers to glycosaminoglycans (GAGs). Keratan sulfate, hyaluronic acid, chondroitin sulfate, Type B, and heparin actually decreased yeast adherence compared to control from 10% to 25%.  相似文献   

3.
Candida albicans ECM33 encodes a glycosylphosphatidylinositol-linked cell wall protein that is important for cell wall integrity. It is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis. To identify potential mechanisms through which Ecm33p contributes to virulence, we investigated the interactions of C. albicans ecm33Delta mutants with endothelial cells and the FaDu oral epithelial cell line in vitro. The growth rate of blastospores of strains containing either one or no intact copies of ECM33 was 50% slower than that of strains containing two intact copies of ECM33. However, all strains germinated at the same rate, forming similar-length hyphae on endothelial cells and oral epithelial cells. Strains containing either one or no intact copies of ECM33 had modestly reduced adherence to both types of host cells, and a markedly reduced capacity to invade and damage these cells. Saccharomyces cerevisiae expressing C. albicans ECM33 did not adhere to or invade epithelial cells, suggesting that Ecm33p by itself does not act as an adhesin or invasin. Examination of ecm33Delta mutants by transmission electron microscopy revealed that the cell wall of these strains had an abnormally electron-dense outer mannoprotein layer, which may represent a compensatory response to reduced cell wall integrity. The hyphae of these mutants also had aberrant surface localization of the adhesin Als1p. Collectively, these results suggest that Ecm33p is required for normal cell wall architecture as well as normal function and expression of cell surface proteins in C. albicans.  相似文献   

4.
The complete genome of Chlamydia pneumoniae contains a total of 21 genes encoding polymorphic membrane proteins (Pmp). From this large Pmp family three genes, pmp8, pmp10 and pmp11, were cloned and antibodies against recombinant full-length Pmp proteins were produced. Indirect immunofluorescence microscopy of HEp-2 cells infected with C. pneumoniae CWL029 was performed with the Pmp antibodies in combination with a Chlamydia-specific anti-lipopolysaccharide (LPS) antibody. This double staining technique clearly showed that expression of Pmp10 was differential. Additional double staining with monoclonal antibodies to the surface of C. pneumoniae elementary bodies and the anti-LPS antibody resulted in identification of seven monoclonal antibodies that reacted identically to the Pmp10 antibody indicating that Pmp10 is an immunodominant protein. Finally, the molecular mechanism responsible for differential expression is suggested to be variation in the guanine residues in the polyG tract of pmp10.  相似文献   

5.
6.
Epidemiological studies indicate influenza virus infection increases susceptibility to bacterial respiratory pathogens and to meningococcal disease. Because density of colonisation is an important factor in the development of bacterial disease, the objectives of the study were to use flow cytometry methods for assessment of bacterial binding and detection of cell surface antigens to determine: (1) if HEp-2 cells infected with human influenza A virus bind greater numbers of bacteria than uninfected cells; (2) if influenza infection alters expression of cell surface antigens which act as receptors for bacterial binding; (3) if neuraminidase affects binding of bacteria to HEp-2 cells. There was significantly increased binding of all isolates tested regardless of surface antigen characteristics. There were no significant differences between virus-infected and -uninfected Hep-2 cells in binding of monoclonal antibodies to Lewisb, Lewisx or H type 2. There were significant increases in binding of monoclonal antibodies to CD14 (P < 0.05) and CD18 (P < 0.01). Treatment of cells with monoclonal antibodies significantly reduced binding of Neisseria meningitidis strain C:2b:P1.2, CD14 (P < 0.001) and CD18 (P < 0.001). No reduction in binding of a strain of Streptococcus pneumoniae (12F) was observed in these experiments. Neuraminidase treatment of HEp-2 cells increased binding of monoclonal antibodies to CD14 (P < 0.01) and CD18 (P < 0.01). In three experiments, the increase in binding of meningococcal strain C:2b:P1.2 to neuraminidase-treated cells was not significant, but binding of Staphylococcus aureus strain NCTC 10655 was significant (P < 0.05).  相似文献   

7.
To investigate the interaction of herpes simplex virus type 1 (HSV-1) with the cell surface, we studied the formation of complexes by HSV-1 virion proteins with biotinylated cell membrane components. HSV-1 virion proteins reactive with surface components of HEp-2 and other cells were identified as gC, gB, and gD. Results from competition experiments suggested that binding of gC, gB, and gD occurred in a noncooperative way. The observed complex formation could be specifically blocked by monospecific rabbit antisera against gB and gD. The interaction of gD with the cell surface was also inhibited by monoclonal antibody IV3.4., whereas other gD-specific monoclonal antibodies, despite their high neutralizing activity, were not able to inhibit this interaction. Taken together, these data provide direct evidence that at least three of the seven known HSV-1 glycoproteins are able to form complexes with cellular surface structures.  相似文献   

8.
Aims:  To establish the role of maltoporin (LamB) in adherence of enteropathogenic Escherichia coli (EPEC) to epithelial cells in vitro.
Methods and Results:  Three strains, wild type (WT) EPEC, a maltoporin (LamB) mutant ΔlamB , and DH5α were used to study adherence to cultured HEp-2 cells. Mutant ΔlamB was found to be deficient in adherence compared to WT EPEC. Adherence of ΔlamB was restored to wild type levels when complemented with the cloned lamB gene. The non–adherent strain DH5α also adhered to HEp-2 cells when it harboured the cloned lamB gene. The LamB protein was isolated from WT EPEC by electroelution and antibodies were raised in rabbits. The specificity of the antibodies was analysed by Western blotting. Anti-LamB antiserum reduced adherence of WT EPEC to HEp-2 cells. The LamB protein was coated on latex beads and the beads adhered to HEp-2 cells. Anti-LamB antiserum prevented bead adherence to HEp-2 cells. Multiple sequence alignment showed that the L9 loop of EPEC LamB had four amino acids different from the L9 loop of LamB from several other related pathogens.
Conclusions:  LamB serves as an alternative or additional adherence factor for EPEC.
Significance and Impact of the Study:  Adherence is an important component of the pathogenesis of noninvasive pathogens like EPEC. A putative adhesin such as LamB, which has already been found to be co-expressed with virulence factor EspB may be a potential vaccine candidate for control of EPEC and related pathogens.  相似文献   

9.
Campylobacter jejuni is a leading cause of acute bacterial gastroenteritis in humans. The mechanism by which C. jejuni interacts with host cells, however, is still poorly understood. Our previous study has shown that the C. jejuni surface lipoprotein JlpA mediates adherence of the bacterium to epithelial cells. In this report, we demonstrated that JlpA interacts with HEp-2 cell surface heat shock protein (Hsp) 90alpha and initiates signalling pathways leading to activation of NF-kappaB and p38 MAP kinase. Gel overlay and GST pull down assays showed that JlpA interacts with Hsp90alpha. Geldanamycin, a specific inhibitor of Hsp90, and anti-human Hsp90alpha antibody significantly blocked the interaction between JlpA and Hsp90alpha, suggesting a direct interaction between JlpA and HEp-2 cell surface-exposed Hsp90alpha. The treatment of HEp-2 cells with GST-JlpA initiated two signalling pathways: one leading to the phosphorylation and degradation of IkappaB and nuclear translocation of NF-kappaB; and another one to the phosphorylation of p38 MAP kinase. The activation of NF-kappaB and p38 MAP kinase in HEp-2 cells suggest that JlpA triggers inflammatory/immune responses in host cells following C. jejuni infection.  相似文献   

10.
Six monoclonal antibodies directed against respiratory syncytial virus proteins were produced. Each was characterized by immunoprecipitation and indirect immunofluorescence. One was directed against the nucleocapsid protein. NP 44, two were directed against a 37,000-dalton protein, two were directed against the major envelope glycoprotein, GP 90, and one was directed against the 70,000-dalton envelope protein, VP 70. Indirect immunofluorescence stain patterns of infected HEp-2 cells defined GP 90 and VP 70 as viral proteins expressed on the cell surface, whereas NP 44 and the 37,000-dalton protein were detected as intracytoplasmic inclusions. One of the anti-GP 90 antibodies neutralized virus only in the presence of complement but did not inhibit cell-cell fusion. The anti-VP 70 antibody neutralized virus without complement and inhibited cell-cell fusion of previously infected HEp-2 cells, thus identifying VP 70 as the fusion protein.  相似文献   

11.
Abstract

Advanced diabetic nephropathy is characterized by abnormal synthesis of extracellular matrix (ECM) proteins, such as collagen I (COL I). The present experiments were designed to test the hypothesis that the presence of abnormal ECM proteins may be responsible for increased generation of reactive oxygen species (ROS) that are thought to have an important role in the pathogenesis of diabetic nephropathy. SV40 MES 13 murine mesangial cells were plated on COL I or collagen IV (COL IV) for 3 h at 5.5 or 25 mM D-glucose concentration. Increased intracellular ROS generation and reduced intracellular nitric oxide (NO) production was measured in cells attached to COL I compared with cells attached to COL IV. Treatment with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NO synthase, reduced this difference in ROS generation between cells attached to either COL I or IV. The results using antibodies against integrins also indicated that an α2 integrin-mediated pathway was involved in the different response in ROS generation caused by ECM proteins. These results suggest that contact between altered ECM proteins that are present in advanced diabetic nephropathy and mesangial cells has the potential to increase intracellular oxidative stress, leading to progressive glomerular damage.  相似文献   

12.
Cell surface hydrophobicity influences the adhesive properties of the opportunistic fungal pathogen Candida albicans. Hydrophobic proteins are present in the C. albicans cell wall. These proteins were used to generate a polyclonal antiserum and monoclonal antibodies. We characterized three of these monoclonal antibodies (designated 6C5, 5F8 and 5D8) that recognize different hydrophobic cell wall proteins. Initial characterization of the three antigens, and assessment of their distribution among various Candida species was also carried out. Further, pretreatment of germ tube initials with the mAb inhibits binding of these cells to immobilized extracellular matrix. These results suggest that these hydrophobic proteins are involved in C. albicans adhesion events.  相似文献   

13.
To examine the possibility of a vaccine for Candida albicans infection in the oral cavity, we induced salivary antibodies by immunization of killed-C. albicans ATCC 18804 on the palatine tonsils of rabbits. The enzyme-linked immunosorbent assay reaction of salivary antibodies was high against C. albicans serotype A. The saliva antibodies greatly inhibited C. albicans adherence to cloned epithelial cells from human gingiva. Tonsillar immunizations of C. albicans ATCC 18804 induce salivary antibodies that prevent C. albicans adherence to epithelial cells, and thus should prove useful in the prevention of oral candidiasis caused by C. albicans serotype A.  相似文献   

14.
Envelope proteins and lipids were extracted from purified herpes simplex virus type 1 virions with octyl glucoside and mixed with phosphatidylcholine for preparation of virosomes by removal of the detergent. Greater than 85% of the extracted envelope proteins, including all the glycoproteins and the nonglycosylated protein designated VP16, were associated with virosomes, which ranged in density from ca. 1.07 to 1.13 g/cm3. All the glycoproteins except gC were as susceptible to degradation by added protease in virosomes as in virions, indicating similar orientations in both. Approximately 30 to 40% of radiolabel incorporated into virosomes bound to HEp-2 cells within 1.5 h at either 4 or 37 degrees C. The cell-bound virosomes were enriched for gB and deficient in other glycoproteins, in comparison with unbound or total virosomes. Binding of virosomes to HEp-2 cells could be inhibited by purified virus, heparin, and monospecific antiviral antibodies. Polyclonal and monoclonal anti-gB antibodies were more effective at inhibiting virosome binding than were anti-gD or anti-gC antibodies. Virosomes depleted of gB or gD did not bind to cells as efficiently as did virosomes containing all the extracted enveloped components; this loss of binding activity was especially pronounced on depletion of gB. The binding of herpes simplex virus type 1 virosomes to cells is discussed in relation to possible heterogeneity of the virosomes and comparisons with binding of virions to cells. We also present electron microscopic evidence that bound virosomes can fuse with the cell surface.  相似文献   

15.
Altered T cell adherence after human immunodeficiency virus 1 (HIV-1) infection may contribute to viral pathogenesis in the acquired immune deficiency syndrome. To address this hypothesis, we assessed mechanisms of T cell adherence to extracellular matrix proteins in vitro. We found that after HIV-1 infection, both chronically infected H9 CD4+ T cells and acutely infected primary peripheral blood lymphocytes acquired the ability to adhere to the extracellular matrix glycoprotein fibronectin, to a lesser extent to type IV collagen and laminin, but not to type I collagen. H9 cells chronically infected with two of the three HIV-1 strains studied showed approximately a sevenfold increase in attachment to fibronectin, while the same cells infected with the human retrovirus HIV-2 did not. Adhesion was accompanied by changes in morphology, including marked spreading and increased filopodia. These alterations were not blocked by the protein kinase C inhibitor H-7, which did inhibit TPA-induced T cell attachment to fibronectin. Monoclonal antibodies against both the alpha 5 and the beta 1 subunits of the classical fibronectin receptor as well as an Arg-Gly-Asp (RGD) peptide inhibited attachment, whereas anti-alpha 4 monoclonal antibodies and the CS1 peptide did not. Binding to collagen IV was also inhibited by the anti-beta 1 monoclonal antibody, but not the other antibodies. Cells metabolically labeled with [35S]methionine and analyzed by immunoprecipitation with polyclonal anti-beta 1 integrin antibody showed a 2.5-fold increase in integrin synthesis in infected cells compared to uninfected controls. This increase in synthesis was associated with an increase in cell surface expression of both alpha 5 and beta 1 integrins by FACS (registered trademark of Becton Dickinson for a fluorescence-activated cell sorter) analysis. Enhanced expression of integrins such as alpha 5 beta 1 may cause T cell adherence to a variety of tissues, where released viral gene products may induce some of the tissue-specific manifestations of HIV-1 infection.  相似文献   

16.
The M protein of group A streptococcus (GAS) is considered to be a major virulence factor because it renders GAS resistant to phagocytosis and allows bacterial growth in human blood. There are more than 80 known serotypes of M proteins, and protective opsonic antibodies produced during disease in humans are serotype specific. M proteins also mediate bacterial adherence to epithelial cells of skin and pharynx. GAS strains vary in the genomic organization of the mga regulon, which contains the genes encoding M and M-like proteins and other virulence factors. This diversity of organization makes it difficult to assess virulence of M proteins of different serotypes, unless they can be expressed in an isogenic background. Here, we express M proteins of different serotypes in the M protein- and protein F1-deficient GAS strain, SAM2, which also lacks M-like proteins. Genes encoding M proteins of different serotypes (emmXs) have been integrated into the SAM2 chromosome in frame with the emm6.1 promoter and its mga regulon, resulting in similar levels of emmX expression. Although SAM2 exhibits a very low level of adherence to and invasion of HEp-2 and HaCaT cells, a SAM2-derived strain expressing M6 protein adheres to and invades both cell types. In contrast, the isogenic strain expressing M18 protein adheres to both cell types, but invades with a very low efficiency. A strain expressing M3 protein adheres to both types of cells, but its invasion of HEp-2 cells is serum dependent. A GAS strain expressing M6 protein does not compete with the isogenic strain expressing M18 protein for adherence to or invasion of HaCaT cells. We conclude that M proteins of different serotypes recognize different repertoires of receptors on the surfaces of eukaryotic cells.  相似文献   

17.
Advanced diabetic nephropathy is characterized by abnormal synthesis of extracellular matrix (ECM) proteins, such as collagen I (COL I). The present experiments were designed to test the hypothesis that the presence of abnormal ECM proteins may be responsible for increased generation of reactive oxygen species (ROS) that are thought to have an important role in the pathogenesis of diabetic nephropathy. SV40 MES 13 murine mesangial cells were plated on COL I or collagen IV (COL IV) for 3 h at 5.5 or 25 mM D-glucose concentration. Increased intracellular ROS generation and reduced intracellular nitric oxide (NO) production was measured in cells attached to COL I compared with cells attached to COL IV. Treatment with N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NO synthase, reduced this difference in ROS generation between cells attached to either COL I or IV. The results using antibodies against integrins also indicated that an alpha(2) integrin-mediated pathway was involved in the different response in ROS generation caused by ECM proteins. These results suggest that contact between altered ECM proteins that are present in advanced diabetic nephropathy and mesangial cells has the potential to increase intracellular oxidative stress, leading to progressive glomerular damage.  相似文献   

18.
As the continuation of a previous study, synthetic peptides corresponding to the extracellular domains of human gonadotropin-releasing hormone (GnRH) receptor were used to generate additional monoclonal antibodies which were further characterized biochemically and immunologically. Among those identified to recognize GnRH receptor, monoclonal antibodies designated as GHR-103, GHR-106 and GHR-114 were found to exhibit high affinity (Kd ≤ 1 × 10−8 M) and specificity to GnRH receptor as judged by the whole cell binding immunoassay and Western blot assay. Both anti-GnRH receptor monoclonal antibodies and GnRH were shown to compete for the same binding site of GnRH receptor on the surface of cultured cancer cells. Growth inhibitions of cancer cells cultured in vitro were demonstrated by cellular apoptosis experiments (TUNEL and MTT assays) under different conditions of treatment with GHR-106 monoclonal antibody or GnRH analogs. It was generally observed that both GnRH I and GHR-106 effectively induce the apoptosis of cultured cancer cells as determined by TUNEL and MTT assays. Consistently, suppressions of gene expressions at mRNA levels were demonstrated with several ribosomal proteins (P0, P1, P2 and L37), when cancer cells were incubated with GnRH or GHR-106. The widespread expressions of GnRH receptor in almost all of the studied human cancer cell lines were also demonstrated by RT-PCR and Western blot assay, as well as indirect immunofluorescence assay with either of these monoclonal antibodies as the primary antibody. In view of the longer half life of antibodies as compared to that of GnRH or its analogs, anti-GnRH receptor monoclonal antibodies in humanized forms could function as GnRH analogs and serve as an ideal candidate of anti-cancer drugs for therapeutic treatments of various cancers in humans as well as for fertility regulations.  相似文献   

19.
Guinea pigs are highly susceptible to Legionella pneumophila infection and therefore have been the preferred animal model for studies of legionellosis. In this study guinea pig infections revealed that the Legionella virulence factor Mip (macrophage infectivity potentiator) contributes to the bacterial dissemination within the lung tissue and the spread of Legionella to the spleen. Histopathology of infected animals, binding assays with components of the extracellular matrix (ECM), bacterial transmigration experiments across an artificial lung epithelium barrier, inhibitor studies and ECM degradation assays were used to elucidate the underlying mechanism of the in vivo observation. The Mip protein, which belongs to the enzyme family of FK506-binding proteins (FKBP), was shown to bind to the ECM protein collagen (type I, II, III, IV, V, VI). Transwell assays with L. pneumophila and recombinant Escherichia coli HB101 strains revealed that Mip enables these bacteria to transmigrate across a barrier of NCI-H292 lung epithelial cells and ECM (NCI-H292/ECM barrier). Mip-specific monoclonal antibodies and the immunosuppressants rapamycin and FK506, which inhibit the peptidyl prolyl cis/trans isomerase (PPIase) activity of Mip, were able to inhibit this transmigration. By using protease inhibitors we found that the penetration of the NCI-H292/ECM barrier additionally requires a serine protease activity. Degradation assays with (35)S-labelled ECM proteins supported the finding of a concerted action of Mip and a serine protease. The described synergism between the activity of the collagen binding Mip protein and the serine protease activity represents an entirely new mechanism for bacterial penetration of the lung epithelial barrier and has implications for other prokaryotic and eukaryotic pathogens.  相似文献   

20.
Anti-nucleolin antibodies have been detected in patients with systemic connective tissue diseases (SCTD) including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). In vivo bound autoantibodies to nucleoli of epidermal keratinocytes have been demonstrated in skin from patients with SCTD. In this study, monoclonal antibody to nucleolin (D-3) was used to determine the distribution of nucleolin in different culture cells including HEp-2, HepG2, HRCC, Molt-4 and Wil2 cells. Nucleolin was found to be present on the surface of HEp-2 and HepG2 cells, but not on the surface of HRCC and lymphoblastoid (Molt-4 and Wil2) cells; in contrast, nucleolin was detected in the nucleoli of all permeabilized cells examined. In immunoprecipitation, using extracts from 32P-labeled HEp-2 cells as antigenic source, cell membrane as well as nuclear nucleolins were found to be phosphorylated with a molecular weight of 105 kDa. Viable HEp-2 and HepG2 cells were cocultured with IgG fraction of D-3 in a CO2 incubator for 1 to 24 h, and then permeabilized with acetone followed by immunofluorescence staining with FITC-labeled goat anti-mouse IgG antibodies. Nucleolar staining was observed in cells after 10 h or longer of coculture. These data indicated that D-3 antibody reacted with cell membrane nucleolin and subsequently gain access into cells in a process related to pinocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号