共查询到20条相似文献,搜索用时 10 毫秒
1.
F. M. de Assis Filho J. Stavisky S. R. Reitz C. M. Deom J. L. Sherwood 《Journal of Applied Entomology》2005,129(9-10):548-550
Abstract: The mechanism leading to vector competence of thrips species to transmit tomato spotted wilt virus (TSWV) is not well characterized. We investigated the interaction of TSWV and the non-vector species Frankliniella tritici . A monoclonal antibody to the non-structural protein (NSs) of the TSWV was used to detect TSWV replication within the thrips by immunofluorescence microscopy and enzyme-linked immonosorbent assay (ELISA). TSWV was acquired by F. tritici , replicated and moved within the alimentary canal of F. tritici similar to a known vector of TSWV, Frankliniella occidentalis . However, virus was not found in the salivary glands of F. tritici , which is a prerequisite to virus transmission. Thus, movement to the salivary glands may determine vector incompetence of F. tritici . 相似文献
2.
I. WIJKAMP F VAN DE WETERING R. GOLDBACH D. PETERS 《The Annals of applied biology》1996,129(2):303-313
To quantify the transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis, the median acquisition access period (AAP50) and median inoculation access period (IAP50) were determined. These parameters were established using transmission rates obtained after AAPs and in IAPs which both ranged from 5 to 2560 min. An AAP50 of 106 min was found when larvae acquired virus from TSWV-infected Impatiens plants. IAP50s of 58 or 137 min, respectively, were calculated when petunia or Datura stramonium leaf disks were used to test the inoculation efficiency of viruliferous thrips. The virus could successfully be acquired or inoculated in periods of 5 min. Transmission reached an optimum after an AAP of 21.3 h (AAPopt) and in an IAP of 42.7 h (IAPopt). These results show that TSWV can be acquired and transmitted efficiently by F. occidentalis in short feeding periods. 相似文献
3.
4.
Fennet van de Wetering Marieke van der Hoek Rob Goldbach Dick Peters 《Entomologia Experimentalis et Applicata》1999,93(1):105-112
Possible differences in tomato spotted wilt virus (TSWV) transmission vector competency between Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) males and females were investigated. The males of the Dutch reference population NL3 transmitted TSWV at a notably higher rate (57%) than the females (32%). The viruliferous males also transmitted more frequently within the first six days after adult emergence than the females. For both sexes, the transmission efficiency dropped with age, simultaneously with the consumption rate. The higher vector efficiency for males appeared to be a general phenomenon as this feature was also found for thirteen other F. occidentalis populations, which originated from distinct geographic regions. 相似文献
5.
Xiaobin Zheng Yanran Wan Min Tao Jiangjiang Yuan Kun Zhang Jing Wang Youjun Zhang Pei Liang Qingjun Wu 《Insect Science》2023,30(3):741-757
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis. 相似文献
6.
In North Carolina, Tomato spotted wilt tospovirus (family Bunyaviridae, genus Tospovirus, TSWV) is vectored primarily by the tobacco thrips, Frankliniella fusca (Hinds), and the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). TSWV overwinters in winter annual weeds from which it is spread to susceptible crops in spring. Because most susceptible crops are destroyed after harvest before winter weeds emerge in the fall, infected summer weeds are thought to be the principal source for spread of TSWV to winter annual weeds in fall. A survey of summer weeds associated with TSWV-susceptible crops in the coastal plain of North Carolina conducted between May and October revealed that relatively few species were commonly infected with TSWV and supported populations of F. fusca or F. occidentalis. F. occidentalis made up > 75% of vector species collected from 15 summer weed species during 2002. The number of F. occidentalis and F. fusca immatures collected from plant samples varied significantly among plant species. Ipomoea purpurea (L.) Roth, Mollugo verticillata L., Cassia obtusifolia L., and Amaranthus palmeri S. Wats supported the largest numbers of immature F. occidentalis. Richardia scabra L., M. verticillata, and Ipomoea hederacea (L.) supported the largest numbers of F. fusca immatures. TSWV was present at 16 of 17 locations, and naturally occurring infections were found in 14 of 29 weed species tested. Five of the TSWV-infected species have not previously been reported as hosts of TSWV (A. palmeri, Solidago altissima L., Ipomoea lacunosa L., I. purpurea, and Phytolacca americana L.). Estimated rates of infection were highest in I. purpurea (6.8%), M. verticillata (5.3%), and I. hederacea (1.9%). When both the incidence of infection by TSWV and the populations of F. occidentalis and F. fusca associated with each weed species are considered, the following summer weed species have the potential to act as significant sources for spread of TSWV to winter annual weeds in fall: I. purpurea, I. hederacea, M. verticillata, A. palmeri, C. obtusifolia, R. scabra, Ambrosia artemisiifolia L., Polygonum pensylvanicum L., and Chenopodium album L. 相似文献
7.
8.
9.
Weed species in tomato production and their role as alternate hosts of Tomato spotted wilt virus and its vector Frankliniella occidentalis 下载免费PDF全文
Tomato spotted wilt virus (TSWV) is an important plant virus that infects a wide range of hosts including weeds making its management difficult. A survey was undertaken to establish the occurrence of weed species in tomato production systems in Kenya and their role as hosts of TSWV and its vectors. Selected weed species were further evaluated for their reaction to TSWV, transmission efficiency by Frankliniella occidentalis and ability to support thrips reproduction. Of the 43 weed species identified in the field, 29 species had been reported as hosts of TSWV, two were non‐hosts and 11 had no record of their status. Among the more common species, Amaranthus hybridus, Solanum nigrum, Tagetes minuta and Datura stramonium were susceptible to the virus and supported high levels of thrips reproduction. The TSWV could not be transmitted to Galinsoga parviflora and Sonchus oleraceus by F. occidentalis despite them being highly susceptible in mechanical transmission tests. There was a significant correlation between feeding damage and number of larvae of F. occidentalis on different weeds. Occurrence of weeds that support thrips reproduction and are good hosts of TSWV is a clear indicator of their role in epidemiology and the importance of their management for disease control. 相似文献
10.
The general principles in pathogen transmission by insects involve a complex and specific interplay, in this case between thrips, tospovirus and their shared host plant, which has led to outbreaks of crop disease epidemics of economic and social importance. The possible processes and factors driving their co‐evolution were partly studied by rearing Frankliniella occidentalis [western flower thrips (WFT)] on either tomato spotted wilt virus (TSWV)–infected or uninfected Capsicum annum leaflets throughout their larval stages. Later, pupae were transferred individually on healthy leaf discs for further studies of the influence of TSWV on WFT development and behavioural patterns. The exposure of WFT to TSWV was found to improve performance with regard to longevity and survival, with mean longevity being significantly higher in TSWV‐exposed WFT compared to unexposed ones (F(3,403) = 22.44, P < 0.0001). The observed improvement in survival was as a result of significant reduction in mortality for the WFT individuals exposed to TSWV (F(3,383) = 849.94, P < 0.0001) compared to the unexposed. However, the results showed a significant reduction in mean daily fecundity overtime (F10,10) = 246.66, P < 0.0001) and across the four treatments (F(3,30) = 6.62, P = 0.001), as well as lifetime fecundity (F(3,23) = 21.23, P < 0.0001) of the WFT exposed to TSWV compared to the unexposed reared on uninfected leaf discs. For preferential test, C. annum leaf discs infected with TSWV were more attractive to WFT as compared to healthy leaf discs (χ2(4, 34) = 112.35, P < 0.0001). These results are envisaged to contribute to a clear understanding into the plant–vector–virus interaction, which is essential for accurate diagnosis and control of the TSWV epidemic, as well as the control of F. occidentalis as crop pest. 相似文献
11.
Four studies were conducted in Georgia during spring 1999, 2000, 2001, and 2002 to evaluate various management tactics for reducing thrips and thrips-vectored tomato spotted wilt virus (TSWV) in tomato and their interactions relative to fruit yield. Populations of thrips vectors of TSWV, Frankliniella occidentalis (Pergande) and Frankliniella fusca (Hinds), were determined using flower and sticky trap samples. The management practices evaluated were host plant resistance, insecticide treatments, and silver or metallic reflective mulch. Averaged over all tests, the TSWV-resistant tomato 'BHN444' on silver mulch treatment had the largest effect in terms of reducing thrips and spotted wilt and increasing marketable yield. Of the insecticide treatments tested, the imidacloprid soil treatment followed by early applications of a thrips-effective foliar insecticide treatment provided significant increase in yield over other treatments. Tomato yield was negatively correlated with the number of F. fusca and percentage of TSWV incidence. F. occidentalis per blossom was positively correlated with percentage of TSWV incidence, but not with yield. No significant interactions were observed between cultivar reflective mulch main plot treatments and insecticide subplot treatments; thus, treatment seemed to be additive in reducing the economic impact of thrips-vectored TSWV. Control tactics that manage thrips early in the growing season significantly increased tomato yield in years when the incidence of TSWV was high (>17%). 相似文献
12.
D.E. Debreczeni L. Rubio J. Aramburu C. López L. Galipienso S. Soler B. Belliure 《The Annals of applied biology》2014,164(2):182-189
Tomato spotted wilt virus (TSWV) causes serious diseases of many economically important crops. Disease control has been achieved by breeding tomato and pepper cultivars with the resistance genes Sw‐5 and Tsw, respectively. However, TSWV isolates overcoming these genetic resistances have appeared in several countries. To evaluate the risk of spread of these resistance‐breaking isolates, we tested their ability of transmission by the main vector of TSWV, the thrips Frankliniella occidentalis. We compared the transmission rate by thrips of six TSWV isolates of different biotype (able or unable to overcome this resistance in pepper and tomato), and with divergent genotype (A and B). Our results indicate that the transmission rate was related to the amount of virus accumulated in thrips but not to virus accumulation in the source plants on which thrips acquired the virus. No correlation was found between transmission efficiency by thrips and the genotype or between transmission efficiency and the ability of overcoming both resistances. This result suggests that resistance‐breaking isolates have the same potential to be transmitted as the isolates unable to infect resistant tomato and pepper cultivars. 相似文献
13.
Kandan A Commare RR Nandakumar R Ramiah M Raguchander T Samiyappan R 《Folia microbiologica》2002,47(2):121-129
Pseudomonas fluorescens (two native strains, one collection strain and their strain mixtures in all possible combinations) when applied through seed,
seedling dip, soil and on leaf significantly reduced the tomato spotted wilt virus (TSWV) disease. InP. fluorescens-treated plants, the peroxidase and phenylalamine ammonia-lyase activity increased. Accumulation of phenolic compounds and
lignin were shown to be increased in theP. fluorescens-treated plants. Isoperoxidase native PAGE indicated that the peroxidase isoforms in tomato plants induced by fluorescent
pseudomonads were different from the control plants; this suggests that the general phenylpropanoid pathway is probably stimulated
in tomato plants treated which in turn led to significant reduction in TSWV. 相似文献
14.
Management of thrips-transmitted tomato spotted wilt (TSW) virus typically relies on tactics that either reduce the thrips vector numbers or change the plant's response to the virus to reduce economic loss. We attempted to quantify the interaction between two such tactics, reflective mulch and the plant activator acibenzolar-S-methyl (Actigard), respectively, on a TSW-susceptible tomato hybrid. A split plot experiment was conducted in 2009 and 2010 where main-plots were three types of plastic mulch (two metalized reflective vs. black) and subplots consisted of a range of plant defense activator applications. TSW pressure varied over year with 80% of untreated plants having TSW in 2009 where as <7% of plants was infected in 2010. No significant interaction between mulch and subplots was found relative to thrips and marketable yield in either year. In 2009, the seasonal average of Frankliniella fusca (Hinds) populations and incidence of TSW were significantly lower and yield significantly higher on both reflective mulches than on black mulch. Seasonal averages of thrips and fruit yield differed significantly among treatments of acibenzolar-S-methyl. However, there was a significant acibenzolar-S-methyl by mulch interaction relative to TSW incidence. In 2009, a minimum of acibenzolar-S-methyl at transplant plus foliar treatments at 10 and 20 d after transplant was required to significantly reduce TSW incidence compared with untreated plants before harvest. Under lower TSW pressure in 2010, average TSW incidence was significantly less in all plots treated with acibenzolar-S-methyl treated plots compared with the check. Acibenzolar-S-methyl treatments functioned better with the thrips reducing tactic, ultraviolet-reflective mulch. We propose that acibenzolar-S-methyl is less effective than metalized reflective mulch in reducing the incidence of TSW in tomato. 相似文献
15.
The effect of tomato spotted wilt virus (TSWV) on Frankliniella occidentalis Pergande (Thysanoptera; Thripidae) following a 6-hour acquisition access period on infected plants was investigated. No statistically significant differences were observed among viruliferous, non-viruliferous and control thrips with respect to developmental time, reproduction rate and survival. Thrips larvae, exposed or non-exposed to TSWV, developed from egg to adult in 13.1 and 13.2 days, respectively. Exposed females produced an average of 28.3 larvae whereas control thrips produced 22.3 larvae and longevity was 13.4 and 12.5 days, respectively. None of these values were significantly different. Population reproductive statistics, net reproductive rate (R
0), mean generation time (T) and intrinsic rate of increase (r
m) were calculated from the life fertility tables. R
0 and r
m were higher for viruliferous thrips as compared to non-viruliferous and non-exposed thrips. Virus transmission studies revealed that viruliferous thrips were able to transmit virus until death and that TSWV was not transovarially transmitted. 相似文献
16.
A. Kandan M. Ramiah V. J. Vasanthi R. Radjacommare R. Nandakumar A. Ramanathan R. Samiyappan 《Biocontrol Science and Technology》2005,15(6):553-569
Strains of Pseudomonas fluorescens were investigated for biocontrol efficacy against tomato spotted wilt virus (TSWV) in tomato both alone and in mixtures. P. fluorescens strains applied to seed, soil and foliage or as a seedling dip significantly reduced TSWV, with a concomitant increase in growth promotion in both the glasshouse and field. Two native strains (CoP-1 and CoT-1) and one foreign strain (CHAO) reduced TSWV. In P. fluorescens-treated tomato plants, increased activity of polyphenol oxidase, β-1,3-glucanase and chitinase was observed, and induction of chitinase was confirmed by western blot analysis. Induction of new protein (18 kDa) detected by SDS-PAGE in P. fluorescens-treated tomato plants was not found in healthy and P. fluorescens-untreated virus inoculated control plants. Indirect ELISA clearly showed a reduction in viral antigen concentration in P. fluorescens-treated tomato plants corresponding to reduced disease ratings. All the P. fluorescens-treated tomato plants also showed enhanced growth and yield compared to control plants. Hence, plant growth promoting rhizobacteria (PGPR) could play a major role in reducing TSWV and increasing yield in tomato plants. 相似文献
17.
The seasonal abundance and temporal pattern of Frankliniella fusca Hinds dispersal were monitored from 1996 to 2000 at 12 locations in central and eastern North Carolina. The predominant vector species of tomato spotted wilt virus (TSWV) captured across all locations was F. fusca (98%). The temporal patterns of F. fusca dispersal observed during spring seasons varied among locations in all years except 2000. Regression analysis estimated that times of first flight in the spring seasons varied among locations, whereas flight duration intervals were similar. Temporal patterns of F. fusca captured varied significantly between aerial traps placed 0.1 and 1.0 m above the soil surface. Fewer total thrips were captured at 0.1 m, although thrips dispersal occurred earlier and over a greater time interval compared with 1.0-m traps. Temporal patterns of TSWV occurrence differed among locations in the spring seasons of 1999 and 2000, whereas patterns of virus occurrence were similar during the fall seasons. Patterns of F. filsca dispersal and subsequent TSWV occurrence were synchronous at locations in 1999 and 2000 where the greatest number of TSWV lesions was recorded. Knowledge of the temporal patterns of F. fiasca dispersal and TSWV occurrence may be a useful indicator for describing the time when susceptible crops are at highest risk of TSWV infection. 相似文献
18.
In nonamended soil, vegetative growth and sporulation ofFusarium spp. were higher in the rhizosphere than in the soil. Sporulation was favoured by young plants and decreased with increasing
plant age. Amendments with low C/N oil-cakes enhanced vegetative growth and sporulation in root-free soil. The extent of stimulation
varied with the nature of organic matter used and the stage of its deoomposition. Sporulation was suppressed by castor cake
and sawdust with urea amendments. Rhizosphere cf pea altered the effect of different amendments. 相似文献
19.
G.C. Mautino D. Sacco M. Ciuffo M. Turina L. Tavella 《The Annals of applied biology》2012,161(3):266-276
In this study we analysed the ability of individual thrips to transmit Tomato spotted wilt virus (TSWV) in a population of Frankliniella occidentalis over their lifespan as adults (about 10 days). In three experiments a total of 636 thrips were individually tested for their transmission capacity through leaf disc assays using four inoculation access periods (IAPs). Almost half of the transmitting thrips maintained the capacity to infect leaf discs in each of the four IAPs, confirming the persistent propagative nature of the transmission modality. Nevertheless, a relevant number of thrips (9.25% of transmitter thrips) was able to transmit in the early phases of their adult life (for the first two IAPs), but did not transmit the virus for the remainder of their lifetime. We compared the virus titer of these individuals at the end of the fourth IAP with that of individuals that maintained transmission ability in the four IAPs and showed a statistically significant difference. This difference could be evidence for recovery from TSWV infection in individual thrips. 相似文献
20.
Herbert DA Malone S Aref S Brandenburg RL Jordan DL Royals BM Johnson PD 《Journal of economic entomology》2007,100(4):1241-1247
Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus, TSWV), transmitted by many thrips species, is a devastating pathogen of peanut, Arachis hypogaea L. TSWV has become a serious problem in the Virginia/Carolina peanut-growing region of the United States. During 2002, TSWV was present in 47% of the North Carolina hectarage and caused a 5% yield reduction in Virginia. Factors influencing levels of TSWV in runner market-type peanut cultivars, which are primarily grown in Alabama, Flordia, Georgia, and Texas, have been integrated into an advisory to help those peanut growers reduce losses. An advisory based on the southeast runner market-type version is currently under development for virginia market-type peanut cultivars that are grown primarily in the Virginia/ Carolina region. A version based on preliminary field experiments was released in 2003. One factor used in both advisories relates to insecticide use to reduce the vector populations and disease incidence. This research elucidated the influence of insecticides on thrips populations, thrips plant injury, incidence of TSWV, and pod yield in virginia market-type peanut. Eight field trials from 2003 to 2005 were conducted at two locations. In-furrow application of aldicarb and phorate resulted in significant levels of thrips control, significant reductions in thrips injury to seedlings, reduced incidence of TSWV, and significant increases in pod yield. Foliar application of acephate after aldicarb or phorate applied in the seed furrow further reduced thrips plant injury and incidence of TSWV and improved yield. These findings will be used to improve the current virginia market-type TSWV advisory. 相似文献