首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
In the phosphoglycerate kinase (PGK) gene of yeast, as in other highly expressed yeast genes, the sequences surrounding the site of RNA initiation have a loosely conserved structure of a CT rich stretch followed by the tetranucleotide CAAG. Using internal deletions and insertions we have identified the elements in the PGK promoter which are required for correct RNA initiation at the CAAG sequence at -39. The results indicate that two different components of the PGK promoter contribute to correct RNA initiation, the TATA homologies, located at -152 and -113, and the sequences at the site of initiation. Both TATA elements can function in RNA initiation. Deletion of the upstream TATA element, TATAI, results in slightly heterogeneous RNA initiation, but the majority of the RNA initiates correctly. Deletion of both the PGK TATA elements results in the majority of the RNA initiating at sites downstream from the wild-type I site, within the structural gene between +40 to +80. The CT rich box is not essential for correct mRNA initiation as shown by deletion analysis. The site of RNA initiation in the PGK promoter appears to be determined by sequences located immediately 5' of the CAAG sequence motif. This short sequence, ACAGATC, when located the correct distance from the TATA elements may be sufficient to determine a discrete initiation site.  相似文献   

4.
5.
The small natural product wortmannin inhibits protein synthesis by modulating several phosphatidylinositol (PI) metabolic pathways. A primary target of wortmannin in yeast is the plasma membrane-associated PI 4-kinase (PI4K) Stt4p, which is required for actin cytoskeleton organization. Here we show that wortmannin treatment or inactivation of Stt4p, but not disorganization of the actin cytoskeleton per se, leads to a rapid attenuation of translation initiation. Interestingly, inactivation of Pik1p, a wortmannin-insensitive, functionally distinct PI4K, implicated in the regulation of Golgi functions and secretion, also results in severe translation initiation defects with a marked increase of the phosphorylation of the translation initiation factor eIF2alpha. Because wortmannin largely phenocopies the effects of rapamycin (e.g. it triggers nuclear accumulation of Gln3p), it likely also inhibits the PI kinase-related, target of rapamycin (TOR) kinases. Importantly, however, neither inactivation of Stt4p nor Pik1p significantly affects TOR-controlled readouts other than translation initiation, indicating that these PI4Ks do not simply function upstream of TOR. Together, our results reveal the existence of a novel translation initiation control mechanism in yeast that is tightly coupled to the synthesis of distinct PI4P pools.  相似文献   

6.
7.
To identify Saccharomyces cerevisiae mutants defective in assembly or function of ribosomes, a collection of cold-sensitive strains generated by treatment with ethyl methanesulfonate was screened by sucrose gradient analysis for altered ratios of free 40S to 60S ribosomal subunits or qualitative changes in polyribosome profiles. Mutations defining seven complementation groups deficient in ribosomal subunits, drs1 to drs7, were identified. We have previously shown that DRS1 encodes a putative ATP-dependent RNA helicase necessary for assembly of 60S ribosomal subunits (T. L. Ripmaster, G. P. Vaughn, and J. L. Woolford, Jr., Proc. Natl. Acad. Sci. USA 89:11131-11135, 1992). Strains bearing the drs2 mutation process the 20S precursor of the mature 18S rRNA slowly and are deficient in 40S ribosomal subunits. Cloning and sequencing of the DRS2 gene revealed that it encodes a protein similar to membrane-spanning Ca2+ ATPases. The predicted amino acid sequence encoded by DRS2 contains seven transmembrane domains, a phosphate-binding loop found in ATP- or GTP-binding proteins, and a seven-amino-acid sequence detected in all classes of P-type ATPases. The cold-sensitive phenotype of drs2 is suppressed by extra copies of the TEF3 gene, which encodes a yeast homolog of eukaryotic translation elongation factor EF-1 gamma. Identification of gene products affecting ribosome assembly and function among the DNAs complementing the drs mutations validates the feasibility of this approach.  相似文献   

8.
9.
10.
Deoxyribonucleic acid (DNA) synthesis was examined in asynchronous and synchronous cultures of a number of cdc (cell division cycle) temperature-sensitive mutant strains. The kinetics of DNA synthesis after a shift to the restrictive temperature was compared with that obtained after inhibition of protein synthesis at the permissive temperature, a condition that specifically blocks the initiation of new rounds of DNA replication, but does not block those in progress. Mutations in three genes (cdc 4, 7, and 28) appear to block a precondition for DNA synthesis since cells carrying these lesions cannot start new rounds of DNA replication after a shift from permissive to restrictive temperature, but can finish rounds that were in progress. These three genes are classified as having roles in the "initiation" of DNA synthesis. Mutations in two genes (cdc 8 and 21) block DNA synthesis, itself, since cells harboring these lesions that had started DNA synthesis at the permissive temperature arrest synthesis abruptly upon a shift to the restrictive temperature. Mutations in 13 other cdc genes do not impair DNA synthesis in the first cell cycle at the restrictive temperature.  相似文献   

11.
12.
13.
CYC1 and sup4 are part of a tightly linked cluster of genes on chromosome X in the yeast Saccharomyces cerevisiae. Using as probes previously cloned fragments containing the CYC1 and sup4 genes, we have identified and cloned the deoxyribonucleic acid (DNA) present between these genes in one strain of yeast. We find that the CYC1 and sup4 genes are approximately 21 kilobases apart. In the same strain, the meiotic map distance is approximately 3.7 centimorgans, for a ratio of 5.6 kilobases per centimorgan in this interval. The physical mapping has allowed unambiguous determination of the orientation of CYC1 and sup4 relative to each other, the centromere, and a nearby transfer ribonucleic acid (tRNA(2Ser)) gene. The spontaneous mutation cyc1-1 inactivates the CYC1 gene as well as the neighboring loci OSM1 and RAD7. We have determined that a cyc1-1-bearing strain lacks approximately 13 kilobases of single-copy DNA from the CYC1-sup4 region, including all of the CYC1 coding information. There is a sequence homologous to the middle-repetitive element Ty1 at or near the breakpoint of the cyc1-1 deletion. We discuss the possibility that Ty elements play a role in the formation of such large, spontaneous deletions, which occur frequently in this region of chromosome X in certain yeast strains.  相似文献   

14.
15.
16.
17.
To further our studies of protein sorting and biogenesis of the lysosome-like vacuole in yeast, we have isolated spontaneous mutations in 11 new VPL complementation groups, as well as additional alleles of the eight previously described VPL genes. These mutants were identified by selecting for cells that mislocalize vacuolar proteins to the cell surface. Morphological examination of the vpl mutants indicated that most contain vacuoles of normal appearance; however, some of the mutants generally lack a large vacuole, and instead accumulate smaller organelles. Of the 19 VPL complementation groups, 12 were found to be identical to 12 of 33 VPT complementation groups identified in a separate study. Moreover, the end1 mutant and all of the previously reported pep mutants, with the exception of pep4, were found to exhibit a profound vacuolar protein sorting defect, and complementation tests between the PEP, VPL VPT and END1 groups demonstrated that there are extensive overlaps between these groups. Collectively, mutants in these four collections define 49 complementation groups required to deliver or retain soluble vacuolar enzymes, including carboxypeptidase Y (CPY) and proteinase A. We have also isolated 462 new mutants that lack normal levels of vacuolar CPY activity. Among these latter mutants, only pep4 mutants were found to be specifically defective in vacuolar zymogen activation. We conclude that there is a large number of gene products required for sorting or retention of vacuolar proteins in yeast, and only a single gene, PEP4, that is essential for activation of CPY and other vacuolar zymogens.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号