首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of protein cellular attributes using pseudo-amino acid composition   总被引:28,自引:0,他引:28  
Chou KC 《Proteins》2001,43(3):246-255
The cellular attributes of a protein, such as which compartment of a cell it belongs to and how it is associated with the lipid bilayer of an organelle, are closely correlated with its biological functions. The success of human genome project and the rapid increase in the number of protein sequences entering into data bank have stimulated a challenging frontier: How to develop a fast and accurate method to predict the cellular attributes of a protein based on its amino acid sequence? The existing algorithms for predicting these attributes were all based on the amino acid composition in which no sequence order effect was taken into account. To improve the prediction quality, it is necessary to incorporate such an effect. However, the number of possible patterns for protein sequences is extremely large, which has posed a formidable difficulty for realizing this goal. To deal with such a difficulty, the pseudo‐amino acid composition is introduced. It is a combination of a set of discrete sequence correlation factors and the 20 components of the conventional amino acid composition. A remarkable improvement in prediction quality has been observed by using the pseudo‐amino acid composition. The success rates of prediction thus obtained are so far the highest for the same classification schemes and same data sets. It has not escaped from our notice that the concept of pseudo‐amino acid composition as well as its mathematical framework and biochemical implication may also have a notable impact on improving the prediction quality of other protein features. Proteins 2001;43:246–255. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
The pseudo amino acid (PseAA) composition can represent a protein sequence in a discrete model without completely losing its sequence-order information, and hence has been widely applied for improving the prediction quality for various protein attributes. However, dealing with different problems may need different kinds of PseAA composition. Here, we present a web-server called PseAAC at http://chou.med.harvard.edu/bioinf/PseAA/, by which users can generate various kinds of PseAA composition to best fit their need.  相似文献   

3.
Predicting protein quaternary structure by pseudo amino acid composition   总被引:1,自引:0,他引:1  
Chou KC  Cai YD 《Proteins》2003,53(2):282-289
In the protein universe, many proteins are composed of two or more polypeptide chains, generally referred to as subunits, that associate through noncovalent interactions and, occasionally, disulfide bonds. With the number of protein sequences entering into data banks rapidly increasing, we are confronted with a challenge: how to develop an automated method to identify the quaternary attribute for a new polypeptide chain (i.e., whether it is formed just as a monomer, or as a dimer, trimer, or any other oligomer). This is important, because the functions of proteins are closely related to their quaternary attribute. For example, some critical ligands only bind to dimers but not to monomers; some marvelous allosteric transitions only occur in tetramers but not other oligomers; and some ion channels are formed by tetramers, whereas others are formed by pentamers. To explore this problem, we adopted the pseudo amino acid composition originally proposed for improving the prediction of protein subcellular location (Chou, Proteins, 2001; 43:246-255). The advantage of using the pseudo amino acid composition to represent a protein is that it has paved a way that can take into account a considerable amount of sequence-order effects to significantly improve prediction quality. Results obtained by resubstitution, jack-knife, and independent data set tests, have indicated that the current approach might be quite promising in dealing with such an extremely complicated and difficult problem.  相似文献   

4.
许嘉 《生物信息学》2013,11(4):297-299
抗冻蛋白是一类具有提高生物抗冻能力的蛋白质。抗冻蛋白能够特异性的与冰晶相结合,进而阻止体液内冰核的形成与生长。因此,对抗冻蛋白的生物信息学研究对生物工程发展。提高作物抗冻性有重要的推动作用。本文采用由400条抗冻蛋白序列和400条非抗冻蛋白序列构成数据集,以伪氨基酸组分为特征,利用支持向量机分类算法预测抗冻蛋白,对训练集预测精度达到91.3%,对测试集预测精度达到78.8%。该结果证明伪氨基酸组分能够很好的反映抗冻蛋白特性,并能够用于预测抗冻蛋白。  相似文献   

5.
Xiao X  Shao S  Ding Y  Huang Z  Huang Y  Chou KC 《Amino acids》2005,28(1):57-61
Summary. Recent advances in large-scale genome sequencing have led to the rapid accumulation of amino acid sequences of proteins whose functions are unknown. Because the functions of these proteins are closely correlated with their subcellular localizations, it is vitally important to develop an automated method as a high-throughput tool to timely identify their subcellular location. Based on the concept of the pseudo amino acid composition by which a considerable amount of sequence-order effects can be incorporated into a set of discrete numbers (Chou, K. C., Proteins: Structure, Function, and Genetics, 2001, 43: 246–255), the complexity measure approach is introduced. The advantage by incorporating the complexity measure factor as one of the pseudo amino acid components for a protein is that it can more effectively reflect its overall sequence-order feature than the conventional correlation factors. With such a formulation frame to represent the samples of protein sequences, the covariant-discriminant predictor (Chou, K. C. and Elrod, D. W., Protein Engineering, 1999, 12: 107–118) was adopted to conduct prediction. High success rates were obtained by both the jackknife cross-validation test and independent dataset test, suggesting that introduction of the concept of the complexity measure into prediction of protein subcellular location is quite promising, and might also hold a great potential as a useful vehicle for the other areas of molecular biology.  相似文献   

6.
The nucleus guides life processes of cells. Many of the nuclear proteins participating in the life processes tend to concentrate on subnuclear compartments. The subnuclear localization of nuclear proteins is hence important for deeply understanding the construction and functions of the nucleus. Recently, Gene Ontology (GO) annotation has been used for prediction of subnuclear localization. However, the effective use of GO terms in solving sequence-based prediction problems remains challenging, especially when query protein sequences have no accession number or annotated GO term. This study obtains homologies of query proteins with known accession numbers using BLAST to retrieve GO terms for sequence-based subnuclear localization prediction. A prediction method PGAC, which involves mining informative GO terms associated with amino acid composition features, is proposed to design a support vector machine-based classifier. PGAC yields 55 informative GO terms with training and test accuracies of 85.7% and 76.3%, respectively, using a data set SNL_35 (561 proteins in 9 localizations) with 35% sequence identity. Upon comparison with Nuc-PLoc, which combines amphiphilic pseudo amino acid composition of a protein with its position-specific scoring matrix, PGAC using the data set SNL_80 yields a leave-one-out cross-validation accuracy of 81.1%, which is better than that of Nuc-PLoc, 67.4%. Experimental results show that the set of informative GO terms are effective features for protein subnuclear localization. The prediction server based on PGAC has been implemented at http://iclab.life.nctu.edu.tw/prolocgac.  相似文献   

7.
A novel approach was developed for predicting the structural classes of proteins based on their sequences. It was assumed that proteins belonging to the same structural class must bear some sort of similar texture on the images generated by the cellular automaton evolving rule [Wolfram, S., 1984. Cellular automation as models of complexity. Nature 311, 419-424]. Based on this, two geometric invariant moment factors derived from the image functions were used as the pseudo amino acid components [Chou, K.C., 2001. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: Struct., Funct., Genet. (Erratum: ibid., 2001, vol. 44, 60) 43, 246-255] to formulate the protein samples for statistical prediction. The success rates thus obtained on a previously constructed benchmark dataset are quite promising, implying that the cellular automaton image can help to reveal some inherent and subtle features deeply hidden in a pile of long and complicated amino acid sequences.  相似文献   

8.
Based on pseudo amino acid (PseAA) composition and a novel hybrid feature selection frame, this paper presents a computational system to predict the PPIs (protein–protein interactions) using 8796 protein pairs. These pairs are coded by PseAA composition, resulting in 114 features. A hybrid feature selection system, mRMR–KNNs–wrapper, is applied to obtain an optimized feature set by excluding poor-performed and/or redundant features, resulting in 103 remaining features. Using the optimized 103-feature subset, a prediction model is trained and tested in the k-nearest neighbors (KNNs) learning system. This prediction model achieves an overall accurate prediction rate of 76.18%, evaluated by 10-fold cross-validation test, which is 1.46% higher than using the initial 114 features and is 6.51% higher than the 20 features, coded by amino acid compositions. The PPIs predictor, developed for this research, is available for public use at http://chemdata.shu.edu.cn/ppi.  相似文献   

9.
基于最近邻居算法,从蛋白质一级序列出发,利用蛋白质序列氨基酸组成、二肤组成以及混合组成方法对蛋白质单聚体、二聚体、三聚体、四聚体、五聚体、六聚体和八聚体进行分类研究。结果表明:采用二肽组成编码方法的预洲效果最好,Jackknife检验和独立测试集检验的总体预测精度分别达到90.83%和95.48%,比相同数据集上基于伪氨基酸组成和组分耦合预测的方法提高了12和15个百分点;特别是对于五聚体蛋白,预测精度分别提高了90和50个百分点;说明二肽组成对于蛋白质四级结构分类研究是一种非常有效的特征提取方法。  相似文献   

10.
Gao Y  Shao S  Xiao X  Ding Y  Huang Y  Huang Z  Chou KC 《Amino acids》2005,28(4):373-376
Summary. With the avalanche of new protein sequences we are facing in the post-genomic era, it is vitally important to develop an automated method for fast and accurately determining the subcellular location of uncharacterized proteins. In this article, based on the concept of pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43: 246–255), three pseudo amino acid components are introduced via Lyapunov index, Bessel function, Chebyshev filter that can be more efficiently used to deal with the chaos and complexity in protein sequences, leading to a higher success rate in predicting protein subcellular location.  相似文献   

11.
Li ZC  Zhou XB  Dai Z  Zou XY 《Amino acids》2009,37(2):415-425
A prior knowledge of protein structural classes can provide useful information about its overall structure, so it is very important for quick and accurate determination of protein structural class with computation method in protein science. One of the key for computation method is accurate protein sample representation. Here, based on the concept of Chou’s pseudo-amino acid composition (AAC, Chou, Proteins: structure, function, and genetics, 43:246–255, 2001), a novel method of feature extraction that combined continuous wavelet transform (CWT) with principal component analysis (PCA) was introduced for the prediction of protein structural classes. Firstly, the digital signal was obtained by mapping each amino acid according to various physicochemical properties. Secondly, CWT was utilized to extract new feature vector based on wavelet power spectrum (WPS), which contains more abundant information of sequence order in frequency domain and time domain, and PCA was then used to reorganize the feature vector to decrease information redundancy and computational complexity. Finally, a pseudo-amino acid composition feature vector was further formed to represent primary sequence by coupling AAC vector with a set of new feature vector of WPS in an orthogonal space by PCA. As a showcase, the rigorous jackknife cross-validation test was performed on the working datasets. The results indicated that prediction quality has been improved, and the current approach of protein representation may serve as a useful complementary vehicle in classifying other attributes of proteins, such as enzyme family class, subcellular localization, membrane protein types and protein secondary structure, etc.  相似文献   

12.
Liu H  Yang J  Wang M  Xue L  Chou KC 《The protein journal》2005,24(6):385-389
Membrane proteins are generally classified into the following five types: (1) type I membrane protein, (2) type II membrane protein, (3) multipass transmembrane proteins, (4) lipid chain-anchored membrane proteins, and (5) GPI-anchored membrane proteins. Given the sequence of an uncharacterized membrane protein, how can we identify which one of the above five types it belongs to? This is important because the biological function of a membrane protein is closely correlated with its type. Particularly, with the explosion of protein sequences entering into databanks, it is in high demand to develop an automated method to address this problem. To realize this, the key is to catch the statistical characteristics for each of the five types. However, it is not easy because they are buried in a pile of long and complicated sequences. In this paper, based on the concept of the pseudo amino acid composition (Chou, K. C. (2001). PROTEINS: Structure, Function, and Genetics 43: 246–255), the technique of Fourier spectrum analysis is introduced. By doing so, the sample of a protein is represented by a set of discrete components that can incorporate a considerable amount of the sequence order effects as well as its amino acid composition information. On the basis of such a statistical frame, the support vector machine (SVM) is introduced to perform predictions. High success rates were yielded by the self-consistency test, jackknife test, and independent dataset test, suggesting that the current approach holds a promising potential to become a high throughput tool for membrane protein type prediction as well as other related areas.  相似文献   

13.
Tantoso E  Li KB 《Amino acids》2008,35(2):345-353
Identifying a protein's subcellular localization is an important step to understand its function. However, the involved experimental work is usually laborious, time consuming and costly. Computational prediction hence becomes valuable to reduce the inefficiency. Here we provide a method to predict protein subcellular localization by using amino acid composition and physicochemical properties. The method concatenates the information extracted from a protein's N-terminal, middle and full sequence. Each part is represented by amino acid composition, weighted amino acid composition, five-level grouping composition and five-level dipeptide composition. We divided our dataset into training and testing set. The training set is used to determine the best performing amino acid index by using five-fold cross validation, whereas the testing set acts as the independent dataset to evaluate the performance of our model. With the novel representation method, we achieve an accuracy of approximately 75% on independent dataset. We conclude that this new representation indeed performs well and is able to extract the protein sequence information. We have developed a web server for predicting protein subcellular localization. The web server is available at http://aaindexloc.bii.a-star.edu.sg .  相似文献   

14.
Afridi TH  Khan A  Lee YS 《Amino acids》2012,42(4):1443-1454
Mitochondria are all-important organelles of eukaryotic cells since they are involved in processes associated with cellular mortality and human diseases. Therefore, trustworthy techniques are highly required for the identification of new mitochondrial proteins. We propose Mito-GSAAC system for prediction of mitochondrial proteins. The aim of this work is to investigate an effective feature extraction strategy and to develop an ensemble approach that can better exploit the advantages of this feature extraction strategy for mitochondria classification. We investigate four kinds of protein representations for prediction of mitochondrial proteins: amino acid composition, dipeptide composition, pseudo amino acid composition, and split amino acid composition (SAAC). Individual classifiers such as support vector machine (SVM), k-nearest neighbor, multilayer perceptron, random forest, AdaBoost, and bagging are first trained. An ensemble classifier is then built using genetic programming (GP) for evolving a complex but effective decision space from the individual decision spaces of the trained classifiers. The highest prediction performance for Jackknife test is 92.62% using GP-based ensemble classifier on SAAC features, which is the highest accuracy, reported so far on the Mitochondria dataset being used. While on the Malaria Parasite Mitochondria dataset, the highest accuracy is obtained by SVM using SAAC and it is further enhanced to 93.21% using GP-based ensemble. It is observed that SAAC has better discrimination power for mitochondria prediction over the rest of the feature extraction strategies. Thus, the improved prediction performance is largely due to the better capability of SAAC for discriminating between mitochondria and non-mitochondria proteins at the N and C terminus and the effective combination capability of GP. Mito-GSAAC can be accessed at . It is expected that the novel approach and the accompanied predictor will have a major impact to Molecular Cell Biology, Proteomics, Bioinformatics, System Biology, and Drug Development.  相似文献   

15.
随机森林方法预测膜蛋白类型   总被引:2,自引:0,他引:2  
膜蛋白的类型与其功能是密切相关的,因此膜蛋白类型的预测是研究其功能的重要手段,从蛋白质的氨基酸序列出发对膜蛋白的类型进行预测有重要意义。文章基于蛋白质的氨基酸序列,将组合离散增量和伪氨基酸组分信息共同作为预测参数,采用随机森林分类器,对8类膜蛋白进行了预测。在Jackknife检验下的预测精度为86.3%,独立检验的预测精度为93.8%,取得了好于前人的预测结果。  相似文献   

16.
Li FM  Li QZ 《Amino acids》2008,34(1):119-125
Summary. The subnuclear localization of nuclear protein is very important for in-depth understanding of the construction and function of the nucleus. Based on the amino acid and pseudo amino acid composition (PseAA) as originally introduced by K. C. Chou can incorporate much more information of a protein sequence than the classical amino acid composition so as to significantly enhance the power of using a discrete model to predict various attributes of a protein, an algorithm of increment of diversity combined with the improved quadratic discriminant analysis is proposed to predict the protein subnuclear location. The overall predictive success rates and correlation coefficient are 75.4% and 0.629 for 504 single localization proteins in jackknife test, and 80.4% for an independent set of 92 multi-localization proteins, respectively. For 406 single localization nuclear proteins with ≤25% sequence identity, the results of jackknife test show that the overall accuracy of prediction is 77.1%. Authors’ address: Qian-Zhong Li, Laboratory of Theoretical Biophysics, Department of Physics, College of Sciences and Technology, Inner Mongolia University, Hohhot 010021, China  相似文献   

17.
This study presents an allergenic protein prediction system that appears to be capable of producing high sensitivity and specificity. The proposed system is based on support vector machine (SVM) using evolutionary information in the form of an amino acid position specific scoring matrix (PSSM). The performance of this system is assessed by a 10-fold cross-validation experiment using a dataset consisting of 693 allergens and 1041 non-allergens obtained from Swiss-Prot and Structural Database of Allergenic Proteins (SDAP). The PSSM method produced an accuracy of 90.1% in comparison to the methods based on SVM using amino acid, dipeptide composition, pseudo (5-tier) amino acid composition that achieved an accuracy of 86.3, 86.5 and 82.1% respectively. The results show that evolutionary information can be useful to build more effective and efficient allergen prediction systems.  相似文献   

18.
The membrane protein type is an important feature in characterizing the overall topological folding type of a protein or its domains therein. Many investigators have put their efforts to the prediction of membrane protein type. Here, we propose a new approach, the bootstrap aggregating method or bragging learner, to address this problem based on the protein amino acid composition. As a demonstration, the benchmark dataset constructed by K.C. Chou and D.W. Elrod was used to test the new method. The overall success rate thus obtained by jackknife cross-validation was over 84%, indicating that the bragging learner as presented in this paper holds a quite high potential in predicting the attributes of proteins, or at least can play a complementary role to many existing algorithms in this area. It is anticipated that the prediction quality can be further enhanced if the pseudo amino acid composition can be effectively incorporated into the current predictor. An online membrane protein type prediction web server developed in our lab is available at http://chemdata.shu.edu.cn/protein/protein.jsp.  相似文献   

19.
相似性比对预测蛋白质亚细胞区间   总被引:1,自引:0,他引:1  
王雄飞  张梁  薛卫  赵南  徐焕良 《微生物学通报》2016,43(10):2298-2305
【目的】对蛋白质所属的亚细胞区间进行预测,为进一步研究蛋白质的生物学功能提供基础。【方法】以蛋白质序列的氨基酸组成、二肽、伪氨基酸组成作为序列特征,用BLAST比对改进K最近邻分类算法(K-nearest neighbor,KNN)实现蛋白序列所属亚细胞区间预测。【结果】在Jackknife检验下,数据集CH317三种特征的成功率分别为91.5%、91.5%和89.3%,数据集ZD98成功率分别为93.9%、92.9%和89.8%。【结论】BLAST比对改进KNN算法是预测蛋白质亚细胞区间的一种有效方法。  相似文献   

20.
Zhang TL  Ding YS 《Amino acids》2007,33(4):623-629
Compared with the conventional amino acid composition (AA), the pseudo amino acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence; this remarkably enhances the power to use a discrete model for predicting various attributes of a protein. In this study, based on the concept of Chou's PseAA, a 46-D (dimensional) PseAA was formulated to represent the sample of a protein and a new approach based on binary-tree support vector machines (BTSVMs) was proposed to predict the protein structural class. BTSVMs algorithm has the capability in solving the problem of unclassifiable data points in multi-class SVMs. The results by both the 10-fold cross-validation and jackknife tests demonstrate that the predictive performance using the new PseAA (46-D) is better than that of AA (20-D), which is widely used in many algorithms for protein structural class prediction. The results obtained by the new approach are quite encouraging, indicating that it can at least play a complimentary role to many of the existing methods and is a useful tool for predicting many other protein attributes as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号