首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed.  相似文献   

2.
3.
A genetic strategy generating wheat with very high amylose content   总被引:1,自引:0,他引:1       下载免费PDF全文
Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down‐regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes.  相似文献   

4.
Immunological characterization of maize starch branching enzymes   总被引:1,自引:1,他引:0  
Highly purified fractions of three starch branching enzymes from developing maize (Zea mays L.) endosperm were used to prepare antisera in rabbits. In double diffusion experiments, no immunoprecipitate was observed when branching enzyme IIa or IIb was tested against branching enzyme I antiserum. No immunoprecipitate was formed when branching enzyme I was tested against branching enzyme IIa or IIb antiserum. Increasing amounts of antisera in the above combinations also failed to inhibit enzyme activity. Branching enzyme IIa antiserum cross-reacted and formed spurs with branching enzyme IIb when compared with branching enzyme IIa antigen. Comparison of branching enzyme IIb antiserum with branching enzyme IIa also resulted in an immunoprecipitate. Increasing levels of branching enzyme IIa antiserum inhibited branching enzyme IIb as did the reciprocal combination. The data indicated that branching enzymes IIa and IIb are immunologically similar while branching enzyme I is distinct. The data supports the classification of starch branching enzymes based on genetic, kinetic, and chromatographic properties.  相似文献   

5.
A high-amylose rice with 64.8% amylose content (AC) was developed by transgenic inhibition of two isoforms of starch branching enzyme (SBE), SBEI and SBEIIb, in an indica rice cultivar. The expression of SBEI and SBEIIb was completely inhibited in the transgenic line, whereas the expression of granule-bound starch synthase was normal. Compared with wild-type rice, drastic reductions in both SBEs in the transgenic rice increased apparent AC in flour from 27.2% to 64.8%, resistant starch (RS) content from 0% to 14.6% and total dietary fibre (TDF) from 6.8% to 15.2%. Elevated AC increased the proportion of long unit chains in amylopectin and increased onset gelatinization temperature and resistance to alkaline digestion; however, kernel weight was decreased. A rat feeding trial indicated that consumption of high-amylose rice decreased body weight gain significantly (P < 0.01); increased faecal mass, faecal moisture and short-chain fatty acids; and lowered the faecal pH. An acute oral rice tolerance test revealed that the high-amylose rice had a positive effect on lowering the blood glucose response in diabetic Zucker fatty rats. This novel rice with its high AC, RS and TDF offers potential benefits for its use in foods and in industrial applications.  相似文献   

6.
Starch-branching enzymes (SBEs) catalyze the formation of alpha(1-->6) glycoside bonds in glucan polymers, thus, affecting the structure of amylopectin and starch granules. Two distinct classes of SBE are generally conserved in higher plants, although the specific role(s) of each isoform in determination of starch structure is not clearly understood. This study used a heterologous in vivo system to isolate the function of each of the three known SBE isoforms of maize (Zea mays) away from the other plant enzymes involved in starch biosynthesis. The ascomycete Brewer's yeast (Saccharomyces cerevisiae) was employed as the host species. All possible combinations of maize SBEs were expressed in the absence of the endogenous glucan-branching enzyme. Each maize SBE was functional in yeast cells, although SBEI had a significant effect only if SBEIIa and SBEIIb also were present. SBEI by itself did not support glucan accumulation, whereas SBEIIa and SBEIIb both functioned along with the native glycogen synthases (GSs) to produce significant quantities of alpha-glucan polymers. SBEIIa was phenotypically dominant to SBEIIb in terms of glucan structure. The specific branching enzyme present had a significant effect on the molecular weight of the product. From these data we suggest that SBEs and GSs work in a cyclically interdependent fashion, such that SBE action is needed for optimal GS activity; and GS, in turn, influences the further effects of SBE. Also, SBEIIa and SBEIIb appear to act before SBEI during polymer assembly in this heterologous system.  相似文献   

7.
颗粒淀粉合成酶(GBSS)和淀粉分支酶3(SBE3)是淀粉合成过程中的两个关键酶,这两个酶主要由耽和SBE3两个基因分别控制,它们的表达量直接影响直链淀粉和支链淀粉的含量比例。为了探讨水稻淀粉关键酶基因耽过量与SBE3干涉复合表达对直链淀粉含量的影响,构建了Wx过量表达与SBE3干涉结合的多基因表达载体,并通过农杆菌介导的方法将其导入日本晴水稻中。经过PCR检测分析获得了65株转基因阳性植株,半定量RT—PCR检测表明转基因株系中Wx基因表达量明显增加,而SBE3基因表达量显著减少。转基因株系籽粒透明度明显降低,直链淀粉含量比野生型的平均高45%,但是千粒重变化不大,与野生型相当。遗传分析表明这些转基因株系多数可稳定遗传。  相似文献   

8.
Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (wheat) was investigated after the incubation of intact plastids with gamma-(32)P-ATP. Among the soluble phosphoproteins detected in plastids, three forms of starch branching enzyme (SBE) were phosphorylated in amyloplasts (SBEI, SBEIIa, and SBEIIb), and both forms of SBE in chloroplasts (SBEI and SBEIIa) were shown to be phosphorylated after sequencing of the immunoprecipitated (32)P-labeled phosphoproteins using quadrupole-orthogonal acceleration time of flight mass spectrometry. Phosphoamino acid analysis of the phosphorylated SBE forms indicated that the proteins are all phosphorylated on Ser residues. Analysis of starch granule-associated phosphoproteins after incubation of intact amyloplasts with gamma-(32)P-ATP indicated that the granule-associated forms of SBEII and two granule-associated forms of starch synthase (SS) are phosphorylated, including SSIIa. Measurement of SBE activity in amyloplasts and chloroplasts showed that phosphorylation activated SBEIIa (and SBEIIb in amyloplasts), whereas dephosphorylation using alkaline phosphatase reduced the catalytic activity of both enzymes. Phosphorylation and dephosphorylation had no effect on the measurable activity of SBEI in amyloplasts and chloroplasts, and the activities of both granule-bound forms of SBEII in amyloplasts were unaffected by dephosphorylation. Immunoprecipitation experiments using peptide-specific anti-SBE antibodies showed that SBEIIb and starch phosphorylase each coimmunoprecipitated with SBEI in a phosphorylation-dependent manner, suggesting that these enzymes may form protein complexes within the amyloplast in vivo. Conversely, dephosphorylation of immunoprecipitated protein complex led to its disassembly. This article reports direct evidence that enzymes of starch metabolism (amylopectin synthesis) are regulated by protein phosphorylation and indicate a wider role for protein phosphorylation and protein-protein interactions in the control of starch anabolism and catabolism.  相似文献   

9.
作物淀粉生物合成与转基因修饰研究进展   总被引:10,自引:0,他引:10  
淀粉是高等植物中碳水化合物的主要贮藏形式 ,也是粮食作物产品的最主要成分。淀粉虽然都由直链淀粉和枝链淀粉组成 ,但在不同作物中两者的比例和枝链淀粉结构的存在很大差异。现已明确 ,直链淀粉是在颗粒结合淀粉合成酶 (granule boundstarchsynthase,GBSS)催化下合成的 ,而枝链淀粉是四种酶共同作用的结果 ,它们分别是腺嘌呤 -葡萄糖焦磷酸化酶 (ADP glucosepyrophosphorylase ,AGP) ,可溶性淀粉合成酶 (solublestarchsynthase ,SSS) ,淀粉分枝酶 (starchbranchingenzyme ,SBE)和脱分枝酶 (starchdebranchingenzyme ,DBE)。一方面 ,在不同作物中 ,这些酶本身存在多种形式 ,如在玉米胚乳中 ,AGP有大亚基和小亚基之分 ,SBE又可分BE1,BEIIa ,BEIIb 3种 ,SSS也可分为SSI和SSIII(或SSIIa)两种 ,而DBE也有异淀粉酶 (isoamylase)和限制性糊精酶 (pullu lanase)两种。另一方面 ,控制特定酶的基因 ,在不同作物甚至在同一种作物的不同品种中也可能存在不同的复等位基因 ,如籼稻和粳稻的GBSS分别由蜡质基因Wxa 和Wxb 控制 ,两者编码的GBSS活性差异显著。此外 ,环境条件也可通过影响基因的转录使酶的含量或催化性能发生变化。迄今 ,国内外已获得多种马铃薯和水稻的转基因材料 ,对淀粉合成进行修饰 ,试图培育优质品  相似文献   

10.
Purification of starch branching enzymes from kernels of two nonlinked mutants of maize, sugary and amylose-extender, showed the basis of the two mutations to be associated with branching enzymes I and IIb, respectively. Branching enzyme I from sugary kernels purified as nonmutant branching enzyme I, but had an altered pattern of activity when amylose was used as a substrate. In addition to the typical fall in absorbance at high wavelengths (550–700 nm) of the amylose-iodine complex, branching of amylose by sugary branching enzyme I caused an increase in absorbance at low wavelengths (400–550 nm). Branching enzyme IIb was undetected in extracts of amylose-extender kernels, while branching enzymes I and IIa appeared unaltered. Low umprimed starch synthase activity was also observed in DEAE-cellulose fractions of amylose-extender maize, but this activity was regenerated by the addition of any branching enzyme.  相似文献   

11.
Boyer CD  Preiss J 《Plant physiology》1981,67(6):1141-1145
Soluble starch synthase and starch-branching enzymes in extracts from kernels of four maize genotypes were compared. Extracts from normal (nonmutant) maize were found to contain two starch synthases and three branching enzyme fractions. The different fractions could be distinguished by chromatographic properties and kinetic properties under various assay conditions. Kernels homozygous for the recessive amylose-extender (ae) allele were missing branching enzyme IIb. In addition, the citrate-stimulated activity of starch synthase I was reduced. This activity could be regenerated by the addition of branching enzyme to this fraction. No other starch synthase fractions were different from normal enzymes. Extracts from kernels homozygous for the recessive dull (du) allele were found to contain lower branching enzyme IIa and starch synthase II activities. Other fractions were not different from the normal enzymes. Analysis of extracts from kernels of the double mutant ae du indicated that the two mutants act independently. Branching enzyme IIb was absent and the citrate-stimulated reaction of starch synthase I was reduced but could be regenerated by the addition of branching enzyme (ae properties) and both branching enzyme IIa and starch synthase II were greatly reduced (du properties). Starch from ae and du endosperms contains higher amylose (66 and 42%, respectively) than normal endosperm (26%). In addition, the amylopectin fraction of ae starch is less highly branched than amylopectin from normal or du starch. The above observations suggest that the alterations of the starch may be accounted for by changes in the soluble synthase and branching enzyme fractions.  相似文献   

12.
RNAi沉默淀粉分支酶基因SBEI对玉米直链淀粉合成的影响   总被引:1,自引:0,他引:1  
淀粉分支酶(SBE)是淀粉合成的限速酶。为了研究SBEI沉默对直链淀粉合成的影响, 克隆了玉米(Zea mays)淀粉分支酶SBEI基因片段, 构建了SBEI的RNAi表达载体pBAC418, 用基因枪将其导入玉米自交系幼胚愈伤组织, 经木糖筛选获得了7株转化再生植株。利用FAD2 intron和xylA基因探针对T0代再生玉米植株进行DNA dot blot和PCR-Southern检测, 证实5株为阳性植株, 其中4株正常结实。SBEI基因沉默对阳性再生玉米株系籽粒的含油量没有显著影响; 蛋白质含量显著高于受体对照; 总淀粉含量与对照相比无显著差异, 转基因株系直链淀粉含量平均提高了9.8%。  相似文献   

13.
Sun MM  Abdula SE  Lee HJ  Cho YC  Han LZ  Koh HJ  Cho YG 《PloS one》2011,6(4):e18385
The composition of amylopectin is the determinant of rice eating quality under certain threshold of protein content and the ratio of amylose and amylopectin. In molecular biology level, the fine structure of amylopectin is determined by relative activities of starch branching enzyme (SBE), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS) in rice grain under the same ADP-Glucose level. But the underlying mechanism of eating quality in molecular biology level remains unclear. This paper reports the differences on major parameters such as SNP and insertion-deletion sites, RNA expressions, and enzyme activities associated with eating quality of japonica varieties. Eight japonica rice varieties with significant differences in various eating quality parameters such as palatability and protein content were used in this experiment. Association analysis between nucleotide polymorphism and eating quality showed that S12 and S13 loci in SBE1, S55 in SSS1, S58 in SSS2A were significantly associated with apparent amylose content, alkali digestion value, setback viscosity, consistency viscosity, pasting temperature, which explained most of the variation in apparent amylose content, setback viscosity, and consistency viscosity; and explained almost all variations in alkali digestion value and pasting temperature. Thirty-five SNPs and insertion-deletions from SBE1, SBE3, GBSS1, SSS1, and SSS2A differentiated high or intermediate palatability rice varieties from low palatability rice varieties. Correlation analysis between enzyme activities and eating quality properties revealed that SBE25 and SSS15/W15 were positively correlated with palatability, whereas GBSS10 and GBSS15 were negatively correlated. Gene expressions showed that SBE1 and SBE3 expressions in high palatability varieties tended to be higher than middle and low palatability varieties. Collectively, SBE1, SBE3, SSS1, and SSS2A, especially SBE1 and SBE3 could improve eating quality, but GBSS1 decreased eating quality. The results indicated the possibility of developing high palatability cultivars through modification of key genes related to japonica rice eating quality formation in starch biosynthesis.  相似文献   

14.
应用RNA干扰技术降低玉米支链淀粉含量   总被引:25,自引:0,他引:25  
为了调控玉米淀粉的生物合成过程,克隆了玉米淀粉分支酶(starch branching enzymes,SBE)基因,构建高效的siRNA表达体系,通过花粉管通道法将其导入玉米自交系.PCR扩增和Southern杂交结果证明,目的基因已被整合到基因组中,且能够遗传.Northern杂交分析表明,该目的基因在转基因植株中能正常转录并导致内源SBE mRNA含量下降.对转基因植株淀粉分支酶活性和淀粉含量测定结果表明,分支酶活性明显地低于对照,相差最多的低85%;总淀粉含量与对照之间基本没有差异,但直链淀粉的含量提高了约50%.  相似文献   

15.
16.
淀粉分支酶(starch branching enzyme, SBE)是淀粉合成的限速酶。为了进一步研究SBEⅡb沉默对玉米生长及直链淀粉合成的影响,克隆了玉米(Zea mays)淀粉分支酶SBEⅡb基因片段,构建了SBEⅡb的发卡结构表达载体pTFU-SBEⅡb hairpin,用农杆菌介导法将其导入玉米HiⅡ幼胚中,经除草剂筛选获得了194株转化再生植株,其中4株结实,获得转基因种子35粒。T1代植株经PCR及试纸条检测获得3株阳性材料,半定量RT-PCR结果得出SBEⅡb的表达量降低,推断出基因表达水平降低对直链淀粉的合成具有正效应。  相似文献   

17.
In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.  相似文献   

18.
Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser649, Ser286, and Ser297. Two Ca2+-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser649 and Ser286 phosphorylation, and K2, responsible for Ser649 and Ser297 phosphorylation. The Ser286 and Ser297 phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel β-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser297 forms a stable salt bridge with Arg665, part of a conserved Cys-containing domain in plant branching enzymes. Ser649 conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application.  相似文献   

19.
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm‐expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch‐free background and with the wild‐type plants. Each of the maize‐derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more‐than‐trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号