首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria isolated from purulent processes on the jaws of European hamsters (Cricetus cricetus) and from intestinal inflammatory processes in Syrian hamsters (Mesocricetus auratus), bred as laboratory animals have been shown to be phenotypically similar but not identical with Pasteurella pneumotropica. Deoxyribonucleic acid (DNA)-DNA hybridization studies indicate that with one exception, the strains represent two new species of the family Pasteurellaceae. In the absence of a close genomic relatedness to members of the genera Actinobacillus or Pasteurella or allied organisms, however, the two new taxa are described without any formal designation. The one exception was identified as Actinobacillus capsulatus, a species not previously isolated from hamsters.  相似文献   

2.
134 bacterial isolates originally identified as Pasteurella pneumotropica were cultured from healthy, ill or dead mice, rats, hamsters, guinea pigs, rabbits and cats originating from 7 conventional laboratory animal facilities. They occurred seldom in pure culture and were found in a variety of organs. Thorough identification (41 criteria) revealed that only 83 isolates (62%) were P. pneumotropica and could be subdivided into 3 biotypes. 3 isolates were P. aerogenes, 1 was P. ureae, 11 (8%) were qualified as Actinobacillus spp. and 13 (10%) as Haemophilus spp. Close relationship of the 3 genera--the 'AHP-group' --made the differentiation difficult. 23 atypical cultures were discarded at the beginning of the study as not belonging to the 'AHP-group'. Two-thirds of isolates were associated with inflammation or suppuration; Haemophilus spp. seemed to be more pathogenic than Pasteurella and Actinobacillus species.  相似文献   

3.
Evidence from numerical taxonomic analysis and DNA-DNA hybridization supports the proposal of new species in the genera Actinobacillus and Pasteurella. The following new species are proposed: Actinobacillus rossii sp. nov., from the vaginas of postparturient sows; Actinobacillus seminis sp. nov., nom. rev., associated with epididymitis of sheep; Pasteurella bettii sp. nov., associated with human Bartholin gland abscess and finger infections; Pasteurella lymphangitidis sp. nov. (the BLG group), which causes bovine lymphangitis; Pasteurella mairi sp. nov., which causes abortion in sows; and Pasteurella trehalosi sp. nov., formerly biovar T of Pasteurella haemolytica, which causes septicemia in older lambs.  相似文献   

4.
Pasteurella spp. were isolated from feral goats and free-ranging bighorn sheep (Ovis canadensis canadensis) in the Hells Canyon National Recreation Area bordering Idaho, Oregon, and Washington (USA). Biovariant 1 Pasteurella haemolytica organisms were isolated from one goat and one of two bighorn sheep found in close association. Both isolates produced leukotoxin and had identical electrophoretic patterns of DNA fragments following cutting with restriction endonuclease HaeIII. Similarly Pasteurella multocida multocida a isolates cultured from the goat and one of the bighorn sheep had D type capsules, serotype 4 somatic antigens, produced dermonecrotoxin and had identical HaeIII electrophoretic profiles. A biovariant U(beta) P.haemolytica strain isolated from two other feral goats, not known to have been closely associated with bighorn sheep, did not produce leukotoxin but had biochemical utilization and HaeIII electrophoretic profiles identical to those of isolates from bighorn sheep. It was concluded that identical Pasteurella strains were shared by the goats and bighorn sheep. Although the direction of transmission could not be established, evidence suggests transmission of strains from goats to bighorn sheep. Goats may serve as a reservoir of Pasteurella strains that may be virulent in bighorn sheep; therefore, goats in bighorn sheep habitat should be managed to prevent contact with bighorn sheep. Bighorn sheep which have nose-to-nose contact with goats should be removed from the habitat.  相似文献   

5.
The internal transcribed spacer (ITS) regions of members of Pasteurellaceae isolated from rodents, including the [Pasteurella] pneumotropica biotypes Jawetz and Heyl, [Actinobacillus] muris, "Hemophilus influenzaemurium" and Bisgaard taxon 17 were studied and their feasibility to discriminate these species was analyzed. The reference strains of all species analyzed showed unique species-specific ITS patterns which were further present in 49 clinical isolates of [P.] pneumotropica biotypes Jawetz and Heyl and [A.] muris allowing their identification by comparison to the reference strains pattern. Sequence analysis of the amplified fragments revealed in all species, with exception of "H. influenzaemurium", a larger ITS(ile+ala) which contained the genes for tRNA(Ile(GAU)) and tRNA(Ala(UGC)) and a smaller ITS(glu) with the tRNA(Glu(UUC)) gene. "H. influenzaemurium" revealed two each of the larger and respectively the smaller ITS fragments. Both the length and the sequence of each ITS type were highly conserved within the [P.] pneumotropica biotypes Jawetz and Heyl and [A.] muris strains tested. On the contrary, ITS sequences revealed significant interspecies variations with identity levels ranging from 61.2 to 89.5% for ITS(ile+ala) and 56.5 to 86.8% for ITS(glu). Sequences regions with significant interspecies variation but highly conserved within the species were identified and might be used to design probes for the identification of rodent Pasteurellaceae to the species level.  相似文献   

6.
Outer membrane vesicles and fragments from Actinobacillus actinomycetemcomitans, Actinobacillus lignieresii, Actinobacillus ureae, Haemophilus aphrophilus, Haemophilus paraphrophilus, Haemophilus influenzae, Haemophilus parainfluenzae, Pasteurella haemolytica, and Pasteurella multocida were isolated and examined semiquantitatively for 19 enzyme activities by using the API ZYM micromethod. The enzyme contents of vesicles and fragments were compared with the enzyme contents of whole cells of the same organisms. Enzymic data were analyzed by using principal-component analysis and soft independent modeling of class analogy. This technique allowed us to distinguish among the closely related organisms A. actinomycetemcomitans, H. aphrophilus, and H. paraphrophilus. A. actinomycetemcomitans was divided into two groups of strains. A. lignieresii fell outside or on the border of the A. actinobacillus class. A. ureae, H. influenzae, H. parainfluenzae, P. haemolytica, and P. multocida fell outside the A. actinomycetemcomitans, H. aphrophilus, and H. paraphrophilus classes.  相似文献   

7.
The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance.  相似文献   

8.
Capsular serotype A strains of Pasteurella multocida of avian origin express a 40-kDa lipoprotein (Plp-40) thought to attach the extracellular polysaccharide to the cell surface. The objective of the present study was to assess the prevalence of Plp-40 in P. multocida strains of disparate serotypes and host origins, as well as other pathogenic members of the family Pasteurellaceae. Exponential-phase reference and clinical isolates were radiolabeled with [3H]-palmitate, lysed to obtain whole-cell protein fractions, and analyzed using SDS-PAGE and fluorography to assess lipoprotein content. The ability to produce Plp-40 was found to be conserved among certain P. multocida reference and clinical strains of different host origins including avian, human, porcine, bovine, feline, canine, ovine, and cervine, but not rabbit. Production of a 40-kDa lipoprotein was exhibited by all clinical isolates of Pasteurella aerogenes, Pasteurella pneumotropica, Actinobacillus suis, Actinobacillus suis-like organism, and Actinobacillus pleuropneumoniae examined, but not Pasteurella (Mannheimia) haemolytica, Actinobacillus lignieresii, or Haemophilus spp. These data suggest that, while not all Pasteurellaceae are able to produce a 40-kDa lipoprotein under the present experimental conditions, expression is somewhat conserved among diverse isolates of disparate host origins. Received: 28 September 2001 / Accepted: 15 October 2001  相似文献   

9.
The objective of this study was to determine the degree of genetic relatedness of Actinobacillus pleuropneumoniae to selected members of the family Pasteurellaceae, with particular emphasis on species commonly associated with swine. Free-solution DNA-DNA hybridization studies revealed that representative strains of all 12 serotypes of A. pleuropneumoniae formed a homogeneous group, sharing 74 to 90% sequence homology with A. pleuropneumoniae serotype 1. All serotypes of A. pleuropneumoniae tested demonstrated a high degree of genetic relatedness (66 to 79%) to the type species of the genus Actinobacillus, A. lignieresii. Little homology (less than 20%) was detected between A. pleuropneumoniae strains and selected Haemophilus spp. and Pasteurella spp. Since free-solution hybridization methods are technically demanding and require large amounts of highly purified DNA, restriction endonuclease fingerprinting (REF) was examined to determine whether it could be a useful taxonomic tool for classification of members of the family Pasteurellaceae. REF profiles were compared, and the degree of similarity between organisms was quantitated by calculating Jaccard similarity coefficients. There was a significant positive relationship between the REF Jaccard coefficients and the DNA homology values determined from free-solution hybridization experiments.  相似文献   

10.
Despite some popularity of hamsters as pets and laboratory animals there is no reliable phylogeny of the subfamily Cricetinae available so far. Contradicting views exist not only about the actual number of species but also concerning the validity of several genera. We used partial DNA sequences of two mitochondrial (cytochrome b, 12S rRNA) and one partial nuclear gene (von Willebrand Factor exon 28) to provide a first gene tree of the Cricetinae based on 15 taxa comprising six genera. According to our data, Palaearctic hamsters fall into three distinct phylogenetic groups: Phodopus, Mesocricetus, and Cricetus-related species which evolved during the late Miocene about 7-12MY ago. Surprisingly, the genus Phodopus, which was previously thought to have appeared during the Pleistocene, forms the oldest clade. The largest number of extant hamster genera is found in a group of Cricetus-related hamsters. The genus Cricetulus itself proved to be not truly monophyletic with Cricetulus migratorius appearing more closely related to Tscherskia, Cricetus, and Allocricetulus. We propose to place the species within a new monotypic genus. Molecular clock calculations are not always in line with the dating of fossil records. DNA based divergence time estimates as well as taxonomic relationships demand a reevaluation of morphological characters previously used to identify fossils and extant hamsters.  相似文献   

11.
To reveal the genetic diversity of Pasteurella pneumotropica, the 16S rDNA sequence and multiple alignments were performed for 35 strains (from 17 mice, 13 rats, 3 hamsters, 1 rabbit, and 1 guinea pig) identified as P. pneumotropica using a commercial biochemical test kit or PCR test and two reference strains (ATCC 35149 and CNP160). Each strain showed a close similarity with one of the following organisms: P. pneumotropica (M75083), Bisgaard taxon22 (AY172726), Pasteurella sp. MCCM00235 (AF224300), Pasteurellaceae gen. sp. Forsyth A3 (AF224301), and Actinobacillus muris (AF024526) on GenBank, and were divided into six clusters on a phylogenic tree. Two reference strains, P. pneumotropica biotype Jawetz and Heyl, were classified at both ends of the clusters. Our conclusion is that P. pneumotropica should be reclassified because of the very wide genetic diversity that exists.  相似文献   

12.
Bacterial phylogenetic clusters revealed by genome structure.   总被引:12,自引:0,他引:12       下载免费PDF全文
Current bacterial taxonomy is mostly based on phenotypic criteria, which may yield misleading interpretations in classification and identification. As a result, bacteria not closely related may be grouped together as a genus or species. For pathogenic bacteria, incorrect classification or misidentification could be disastrous. There is therefore an urgent need for appropriate methodologies to classify bacteria according to phylogeny and corresponding new approaches that permit their rapid and accurate identification. For this purpose, we have devised a strategy enabling us to resolve phylogenetic clusters of bacteria by comparing their genome structures. These structures were revealed by cleaving genomic DNA with the endonuclease I-CeuI, which cuts within the 23S ribosomal DNA (rDNA) sequences, and by mapping the resulting large DNA fragments with pulsed-field gel electrophoresis. We tested this experimental system on two representative bacterial genera: Salmonella and Pasteurella. Among Salmonella spp., I-CeuI mapping revealed virtually indistinguishable genome structures, demonstrating a high degree of structural conservation. Consistent with this, 16S rDNA sequences are also highly conserved among the Salmonella spp. In marked contrast, the Pasteurella strains have very different genome structures among and even within individual species. The divergence of Pasteurella was also reflected in 16S rDNA sequences and far exceeded that seen between Escherichia and Salmonella. Based on this diversity, the Pasteurella haemolytica strains we analyzed could be divided into 14 phylogenetic groups and the Pasteurella multocida strains could be divided into 9 groups. If criteria for defining bacterial species or genera similar to those used for Salmonella and Escherichia coli were applied, the striking phylogenetic diversity would allow bacteria in the currently recognized species of P. multocida and P. haemolytica to be divided into different species, genera, or even higher ranks. On the other hand, strains of Pasteurella ureae and Pasteurella pneumotropica are very similar to those of P. multocida in both genome structure and 16S rDNA sequence and should be regarded as strains within this species. We conclude that large-scale genome structure can be a sensitive indicator of phylogenetic relationships and that, therefore, I-CeuI-based genomic mapping is an efficient tool for probing the phylogenetic status of bacteria.  相似文献   

13.
A numerical taxonomic study of Actinobacillus, Pasteurella and Yersinia   总被引:3,自引:0,他引:3  
A numerical taxonomic study of strains of Actinobacillus, Pasteurella and Yersinia, with some allied bacteria, showed 23 reasonably distinct groups. These fell into three major areas. Area A contained species of Actinobacillus and Pasteurella: A. suis, A. equuli, A. lignieresii, P. haemolytica biovar A, P. haemolytica biovar T, P. multocida, A. actinomycetemcomitans, 'P. bettii', 'A. seminis', P. ureae and P. aerogenes. Also included in A was a composite group of Pasteurella pneumotropica and P. gallinarum, together with unnamed groups referred to as 'BLG', 'Mair', 'Ross' and 'aer-2'. Area B contained species of Yersinia: Y. enterocolitica, Y. pseudotuberculosis, Y. pestis and a group 'ent-b' similar to Y. enterocolitica. Area C contained non-fermenting strains: Y. philomiragia, Moraxella anatipestifer and a miscellaneous group 'past-b'. There were also a small number of unnamed single strains.  相似文献   

14.
McGee JE  Bejcek BE 《Plasmid》2001,46(1):60-64
Several plasmids from Pasteurella multocida have been shown to carry antibiotic resistance genes but no other genes possibly related to the organism's pathogenesis. We report here that sequence from the plasmid pLEM from a fowl isolate of P. multocida, strain 1059, contained one open reading frame that had significant identity with a predicted protein from pVT745, a plasmid that was isolated from a human oral isolate of Actinobacillus actinomycetemcomitans. This predicted protein had significant homology at the amino acid level to cation transport proteins.  相似文献   

15.
A novel fibronectin-binding protein from Pasteurella multocida (PM1665) that binds to the fibronectin type III9-10 modules via two helix-hairpin-helix motifs has recently been described [1]. This protein shares homology with competence-related DNA-binding and uptake proteins (ComEA and ComE) from Gram-positive and Gram-negative bacteria. Here, we show that recombinant PM1665 (now designated ComE1) also binds to DNA through the same helix-hairpin-helix motifs required for fibronectin-binding. This binding to DNA is non sequence-specific and is confined to double-stranded DNA. We have cloned and expressed ComE1 proteins from five members of the Pasteurellaceae in order to further investigate the function(s) of these proteins. When expressed as recombinant GST-fusion proteins, all of the homologues bound both to fibronectin and to double-stranded DNA. Inactivation of the gene encoding the ComE1 homologue in Actinobacillus pleuropneumoniae indicates major roles for these proteins in at least two processes: natural transformation, and binding of bacteria to fibronectin.  相似文献   

16.
In order to investigate the relationships between species of the genus Pasteurella sensu stricto such as Pasteurella multocida, Pasteurella canis, Pasteurella stomatis, Pasteurella dagmatis, Pasteurella avium, Pasteurella volantium, Pasteurella gallinarum, Pasteurella species A, Pasteurella species B and "Pasteurella leonis" MCCM 00659 their genomic fingerprints and ARDRA profiles were compared and their quinone systems were analysed. Visual comparison of band patterns from rep-PCR (ERIC-, REP- and BOX-PCR) and the analyses of the combined band patterns by UPGMA (unweighted pair group method with averages) dendrogram derived from the combined fingerprint profiles demonstrated that each strain displays a distinct genomic fingerprint. In members of the same species several similarities in the band patterns were observed. Combined ARDRA profiles, obtained after digestion of amplified 23S rRNA coding genes with the enzymes DdeI, MseI and RsaI, revealed a dissection of the members of the genus Pasteurella sensu stricto into two groups which was in agreement with the two groups obtained from our analyses of the quinone systems. These two groups corresponded with the two phylogenetically determined subclusters 3A and 3B described previously. The species of subcluster 3A displayed a quinone system with ubiquinone Q-7 (32-56%) and ubiquinone Q-8 (44-63%) as major compounds. Members of subcluster 3B had a quinone system with ubiquinone Q-8 (86-97%) as the major compound. Based on these results it can be suggested that the genus Pasteurella sensu stricto should be restricted to the species of subcluster 3B including the species Pasteurella multocida, Pasteurella canis, Pasteurella stomatis, Pasteurella dagmatis and Pasteurella species B. In addition, evidence was found which would indicate that: 1) Pasteurella canis MCCM 00927 is misnamed and should be reclassified with Pasteurella multocida; 2) Pasteurella multocida subsp. septica may be classified as a separate species; and 3) "Pasteurella leonis" MCCM 00659 represents a separate species within subcluster 3B and thus could be described as a species of Pasteurella sensu stricto (also in a redefined genus) when more strains become available.  相似文献   

17.
18.
Pasteurellaceae are among the most prevalent bacterial pathogens isolated from mice housed in experimental animal facilities. Reliable detection and differentiation of Pasteurellaceae are essential for high-quality health monitoring. In this study, we combined a real-time PCR assay amplifying a variable region in the 16S rRNA sequence with high-resolution melting curve analysis (HRM) to identify and differentiate among the commonly isolated species Pasteurella pneumotropica biotypes “Jawetz” and “Heyl”, Actinobacillus muris, and Haemophilus influenzaemurium. We used a set of six reference strains for assay development, with the melting profiles of these strains clearly distinguishable due to DNA sequence variations in the amplicon. For evaluation, we used real-time PCR/HRM to test 25 unknown Pasteurellaceae isolates obtained from an external diagnostic laboratory and found the results to be consistent with those of partial 16S rRNA sequencing. The real-time PCR/HRM method provides a sensitive, rapid, and closed-tube approach for Pasteurellaceae species identification for health monitoring of laboratory mice.  相似文献   

19.
Chemotaxonomic data for strains of Actinobacillus, Haemophilus and Pasteurella spp. were analysed using three multivariate statistical strategies: principal components, partial least squares discriminant, and soft independent modelling of class analogy. The species comprised Actinobacillus actinomycetemcomitans. Haemophilus aphrophilus, H. paraphrophilus, H. influenzae, Pasteurella multocida, P. haemolytica and P. ureae. Strains were characterized by cell sugar and fatty acid composition, lysis kinetics during EDTA and EDTA plus lysozyme treatment, and methylene blue reduction. In total 23 quantitative variables were compiled from chemotaxonomic analyses of 25 strains. A. actinomycetemcomitans and H. aphrophilus formed distinct classes which differed from those of H. paraphrophilus, H. influenzae and Pasteurella spp. All characterization variables, except those describing fatty acid content, contributed significantly to inter-species discrimination.  相似文献   

20.
Virtually complete 16S rRNA sequences were determined for 54 representative strains of species in the family Pasteurellaceae. Of these strains, 15 were Pasteurella, 16 were Actinobacillus, and 23 were Haemophilus. A phylogenetic tree was constructed based on sequence similarity, using the Neighbor-Joining method. Fifty-three of the strains fell within four large clusters. The first cluster included the type strains of Haemophilus influenzae, H. aegyptius, H. aphrophilus, H. haemolyticus, H. paraphrophilus, H. segnis, and Actinobacillus actinomycetemcomitans. This cluster also contained A. actinomycetemcomitans FDC Y4, ATCC 29522, ATCC 29523, and ATCC 29524 and H. aphrophilus NCTC 7901. The second cluster included the type strains of A. seminis and Pasteurella aerogenes and H. somnus OVCG 43826. The third cluster was composed of the type strains of Pasteurella multocida, P. anatis, P. avium, P. canis, P. dagmatis, P. gallinarum, P. langaa, P. stomatis, P. volantium, H. haemoglobinophilus, H. parasuis, H. paracuniculus, H. paragallinarum, and A. capsulatus. This cluster also contained Pasteurella species A CCUG 18782, Pasteurella species B CCUG 19974, Haemophilus taxon C CAPM 5111, H. parasuis type 5 Nagasaki, P. volantium (H. parainfluenzae) NCTC 4101, and P. trehalosi NCTC 10624. The fourth cluster included the type strains of Actinobacillus lignieresii, A. equuli, A. pleuropneumoniae, A. suis, A. ureae, H. parahaemolyticus, H. parainfluenzae, H. paraphrohaemolyticus, H. ducreyi, and P. haemolytica. This cluster also contained Actinobacillus species strain CCUG 19799 (Bisgaard taxon 11), A. suis ATCC 15557, H. ducreyi ATCC 27722 and HD 35000, Haemophilus minor group strain 202, and H. parainfluenzae ATCC 29242. The type strain of P. pneumotropica branched alone to form a fifth group. The branching of the Pasteurellaceae family tree was quite complex. The four major clusters contained multiple subclusters. The clusters contained both rapidly and slowly evolving strains (indicated by differing numbers of base changes incorporated into the 16S rRNA sequence relative to outgroup organisms). While the results presented a clear picture of the phylogenetic relationships, the complexity of the branching will make division of the family into genera a difficult and somewhat subjective task. We do not suggest any taxonomic changes at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号