首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA synthesis in chromatin isolated from herpes simplex virus type 1-infected HeLa cells (HSV chromatin) was examined in vitro. The HSV chromatin was found to carry out an initial limited synthesis of DNA in vitro, 50 to 64 pmol of dTMP incorporated in 10(6) nuclei per 10 min, which is comparable to that found in nuclei isolated from HSV-infected cells. DNA synthesis in vitro proceeded for only 30 min, and both HSV DNA and host DNA were synthesized in significant amounts. The HSV and host DNA synthesis in isolated chromatin were inhibited to the same extent by anti-HSV antiserum or by phosphonoacetic acid. The results indicate that the HSV-induced DNA polymerase is most likely involved in the synthesis of host and HSV DNA in isolated chromatin, even though this chromatin contains small amounts of the host gamma-polymerase in addition to the HSV-induced DNA polymerase. The HSV chromatin contains no detectable levels of DNA polymerases alpha and beta, even though infected cells have normal, or increased, levels of these enzymes.  相似文献   

2.
3.
A soluble extract prepared from nuclei of HeLa cells infected with herpes simplex virus type 1 has been found to synthesize herpes DNA in a process comparable to that observed in intact nuclei. The incorporation of [3H]dTTP has an absolute requirement for Mg++ and for the other three deoxyribonucleoside triphosphates, and is relatively independent of added ATP. The reaction product, although of relatively short chain length, bands in CsCl density gradients at the density of herpes DNA and is essentially free of labeled cell DNA. Incorporation of BrdUTP results in a density shift suggesting extensive replication of endogenous DNA sequences.  相似文献   

4.
Structure of replicating herpes simplex virus DNA.   总被引:8,自引:6,他引:2       下载免费PDF全文
We have investigated the molecular anatomy of the herpes simplex virus replicative intermediates by cleavage with the restriction endonuclease BglII. We find that in populations of multiply infected cells, pulse-labeled replicating herpes simplex virus DNA contains at least two and probably all four sequence isomers. Also, it contains no detectable termini. In pulse-chase experiments, we show that endless replicative intermediates are the precursors to virion DNA and that maturation is a relatively slow process. The results are discussed in terms of their significance to possible models of herpes simplex virus DNA replication.  相似文献   

5.
6.
Translational regulation of herpes simplex virus DNA polymerase.   总被引:2,自引:0,他引:2       下载免费PDF全文
D R Yager  A I Marcy    D M Coen 《Journal of virology》1990,64(5):2217-2225
  相似文献   

7.
Chromatin isolated from herpes simplex virus type 1-infected baby hamster kidney cells contains a number of tightly associated virus-induced polypeptides. A subset of these proteins bind to immobilized DNA in vitro (Vmw 175, 155, 130, 63, 43, 38/39). Virus-induced polypeptides extractable with acid from infected cell chromatin include Vmw 155, the major capsid protein of herpes simplex virus type 1 virions, and Vmw 63 and 38/39 which are heterogeneous with respect to charge and are phosphorylated. These chromatin preparations, in the presence of deoxynucleoside triphosphates and MgCl2 were capable of synthesizing viral and cell DNA in a reaction which was stimulated by the addition of ATP, riboNTPs and potassium acetate. In vitro synthesized viral DNA co-sedimented with prelabelled parental DNA but the single-stranded product was smaller than parental DNA. Density labelling indicated that extensive synthesis was taking place and all BamHI fragments of viral DNA were represented by the DNA synthesized in vitro.  相似文献   

8.
9.
A complex which is active in in vitro synthesis of adeno-associated virus (AAV) DNA was solubilized from Vero cells that were co-infected with AAV and either adenovirus (Ad5) or a herpes simplex virus type 1 (HSV-1) as the helper virus. The complexes from the Ad5 and HSV-1-infected cells sedimented at 23 S and 28 S, respectively. The optimal conditions for in vitro DNA synthesis for the two types of complex using the endogenous AAV template and the endogenous DNA polymerase, differed with respect to the effect of KCl and K2SO4 concentration. In addition the complex from HSV-1-infected cells, but not that from Ad5-infected cells, was inhibited by phosphonoacetic acid. Thus, the two complexes appear to contain different DNA polymerase activities. This was verified by phosphocellulose chromatography of the DNA polymerases solubilized from the isolated complexes. The major activity in the complex from HSV-1 infected cells was the HSV-induced DNA polymerase with lesser amounts of cellular DNA polymerase alpha and gamma or both. The complex from the Ad5-infected cells contained mainly a cellular DNA polymerase gamma.  相似文献   

10.
Analyses of the herpes simplex virus (HSV) DNA sequences which are present in three HSV thymidine kinase-transformed (HSVtk+) mouse cell lines have revealed that these cells contain relatively large and variable portions of the viral genome. Two of these cell lines do not contain the viral DNA sequences known to encode the early viral genes normally responsible for regulating tk gene expression during lytic HSV infections. This finding suggests that cell-associated viral tk gene expression may be regulated by cellular rather than viral control mechanisms. In addition, we have compared the viral DNA sequences present in one unstable HSVtk+ cell line to those present in tk- revertant and tk+ rerevertant cell lines sequentially derived from it. Our results have shown that within the limits of sensitivity of our mapping approach, these three related cell lines contain the same set of viral DNA sequences. Thus, gross changes in viral DNA content do not appear to be responsible for the different tk phenotypes of these cells.  相似文献   

11.
Purified preparations of herpes simplex virus type 2 DNA polymerase made by many different laboratories always contain at least two polypeptides. The major one, of about 150,000 molecular weight, has been associated with the polymerase activity. The second protein, of about 54,000 molecular weight, which we previously designated ICSP 34, 35, has now been purified. The purified protein has been used to prepare antisera (both polyclonal rabbit serum and monoclonal antibodies). These reagents have been used to characterize the protein, to demonstrate its quite distinct map location from that of the DNA polymerase on the herpes simplex virus genome, and to demonstrate the close association between the two polypeptides.  相似文献   

12.
Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recombination and repair, often performed by cellular proteins. Here, we review new significant developments: the three-dimensional structures for the DNA polymerase, the polymerase accessory factor, and the single-stranded DNA-binding protein; the reconstitution of a functional replisome in vitro; the elucidation of the mechanism for activation of origins of DNA replication; the identification of cellular proteins actively involved in or responding to viral DNA replication; and the elucidation of requirements for formation of replication foci in the nucleus and effects on protein localization.  相似文献   

13.
Wilkinson DE  Weller SK 《IUBMB life》2003,55(8):451-458
In many organisms the processes of DNA replication and recombination are closely linked. For instance, in bacterial and eukaryotic systems, replication forks can become stalled or damaged, in many cases leading to the formation of double stranded breaks. Replication restart is an essential mechanism in which the recombination and repair machinery can be used to continue replication after such a catastrophic event. DNA viruses of bacteria such as lambda and T4 also rely heavily on DNA recombination to replicate their genomes and both viruses encode specialized gene products which are required for recombination-dependent replication. In this review, we examine the linkage between replication and recombination in the eukaryotic pathogen, Herpes Simplex Virus Type 1 (HSV-1). The evidence that recombination plays an intrinsic role in HSV-1 DNA replication and the infection process will be reviewed. We have recently demonstrated that HSV-1 encodes two proteins which may be analogous to the lambda phage recombination system, Red(alpha) and beta. The HSV-1 alkaline nuclease, a 5' to 3' exonuclease, and ICP8, a single stranded DNA binding protein, can carry out strand annealing reactions similar to those carried out by the lambda Red system. In addition, evidence suggesting that host recombination proteins may also be important for HSV-1 replication will be reviewed. In summary, it is likely that HSV-1 infection will require both viral and cellular proteins which participate in various pathways of recombination and that recombination-dependent replication is essential for the efficient replication of viral genomes.  相似文献   

14.
The organization of DNA within the HSV-1 capsid has been determined by cryoelectron microscopy and image reconstruction. Purified C-capsids, which are fully packaged, were compared with A-capsids, which are empty. Unlike A-capsids, C-capsids show fine striations and punctate arrays with a spacing of approximately 2.6 nm. The packaged DNA forms a uniformly dense ball, extending radially as far as the inner surface of the icosahedral (T = 16) capsid shell, whose structure is essentially identical in A-capsids and C-capsids. Thus we find no evidence for the inner T = 4 shell previously reported by Schrag et al. to be present in C-capsids. Encapsidated HSV-1 DNA closely resembles that previously visualized in bacteriophages T4 and lambda, thus supporting the idea of a close parallelism between the respective assembly pathways of a major family of animal viruses (the herpesviruses) and a major family of bacterial viruses.  相似文献   

15.
A Bolden  J Aucker    A Weissbach 《Journal of virology》1975,16(6):1584-1592
Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha.  相似文献   

16.
We have used a novel filter hybridization approach to detect and map the herpes simplex virus (HSV) DNA sequences which are present in four HSV thymidine kinase (HSVtk+)-transformed cell lines which were derived by exposure of thymidine kinase negative (tk-) mouse cells to UV light-irradiated HSV type 2 (HSV-2). In addition, we have mapped the HSV-1 DNA sequences which are present in two HSV-1tk+-transformed cell lines produced by transfection of tk- mouse cells with sheared HSV-1 DNA. The results of these studies can be summarized as follows. (i) The only HSV DNA sequences which were common to all HSVtk+-transformed cells were those located between map coordinates 0.28 and 0.32. Thus, this region contains all of the viral DNA sequences which are necessary for the expression of HSV-mediated tk transformation. (ii) Many of the cell lines also contained variable amounts of non-tk gene viral DNA sequences located between map coordinates 0.11 to 0.57 and 0.82 to 1.00, suggesting that incorporation of the viral DNA sequences located between these map coordinates is a relatively random event. (iii) The viral DNA sequences located between map coordinates 0 to 0.11 and 0.57 to 0.82 were uniformly absent from all of the HSVtk+ cell lines tested, suggesting that there is a strong negative selective pressure against incorporation of these viral DNA sequences.  相似文献   

17.
Anatomy of herpes simplex virus DNA. V. Terminally repetitive sequences.   总被引:32,自引:21,他引:11       下载免费PDF全文
Native DNA from four strains of herpes simplex virus 1 (HSV-1) circularized after digestion with the lambda exonuclease, indicating that the molecules were terminally repetitious. In two strains, the terminal repetition was evident in nearly 50% of the DNA molecules. Maximal circularization was observed when only 0.25 to 0.5% of the DNA was depolymerized by the exonuclease, suggesting that the minimal size of the terminally repetitious regions is in the range of 400 to 800 bases pairs. More extensive exonuclease treatment resulted in a reduction in the frequency of circularization. To determine whether the terminally repetitive regions themselves contained self-annealing sequences that were precluding circularization of more extensively digested DNA, the terminal fragments from HinIII restriction endonuclease digests were isolated, denatured, and tested for their ability to self-anneal. The results of hydroxyapatite column chromatography and electron microscope examination of the terminal regions are consistent with this hypothesis.  相似文献   

18.
As reported by Jamieson and Subak-Sharpe (J. Gen. Virol. 31:303-313, 1976), exogenous deoxycytidine is very poorly incorporated into herpes simplex virus DNA. Here it is shown that this incorporation was dramatically increased in the presence of tetrahydrouridine (THU), a specific inhibitor of cytidine-deoxycytidine deaminase. Thus, the exclusion of deoxycytidine from herpes simplex virus DNA probably results from massive degradation by the deaminase, which is consistent with the observation that in the absence of THU, most of the nucleotides formed from exogenous deoxycytidine are dUMP. The effect of tHU upon deoxycytidine incorporation was specific for herpes simplex virus-infected cells; THU did not increase deoxycytidine incorporation into DNA of uninfected cells. Therefore, one might expect THU to enhance the antiviral activity of 1-beta-D-arabinofuranasylcytosine since this analog is also readily deaminated. However, THU increased both the antiviral activity and the cell toxicity only slightly and to about the same extent. Therefore, the metabolism of 1-beta-D-arabnofuranosylcytosine is different from that of deoxycytidine in herpes simplex virus-infected cells.  相似文献   

19.
20.
A DNA helicase induced by herpes simplex virus type 1.   总被引:18,自引:6,他引:12       下载免费PDF全文
We have identified and partially purified a DNA-dependent ATPase that is present specifically in herpes simplex virus type 1-infected Vero cells. The enzyme which has a molecular weight of approximately 440,000 differs from the comparable host enzyme in its elution from phosphocellulose columns and in its nucleoside triphosphate specificity. The partially purified DNA-dependent ATPase is also a DNA helicase that couples ATP or GTP hydrolysis to the displacement of an oligonucleotide annealed to M13 single-stranded DNA. The enzyme requires a 3' single-stranded tail on the duplex substrate, suggesting that the polarity of unwinding is 5'----3' relative to the M13 DNA. The herpes specific DNA helicase may therefore translocate on the lagging strand in the semidiscontinuous replication of the herpes virus 1 genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号