首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion–regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and β-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of β-catenin. β-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and β-catenin promotes excitatory synapse development and function.  相似文献   

2.
RPTPmu is a prototypic receptor-like protein-tyrosine phosphatase (RPTP) that mediates homotypic cell-cell interactions. Intracellularly, RPTPmu consists of a relatively large juxtamembrane region and two phosphatase domains, but little is still known about its substrate(s). Here we show that RPTPmu associates with the catenin p120(ctn), a tyrosine kinase substrate and an interacting partner of cadherins. No interaction is detectable between RPTPmu and beta-catenin. Furthermore, we show that tyrosine-phosphorylated p120(ctn) is dephosphorylated by RPTPmu both in vitro and in intact cells. Complex formation between RPTPmu and p120(ctn) does not require tyrosine phosphorylation of p120(ctn). Mutational analysis reveals that both the juxtamembrane region and the second phosphatase domain of RPTPmu are involved in p120(ctn) binding. The RPTPmu-interacting domain of p120(ctn) maps to its unique N terminus, a region distinct from the cadherin-interacting domain. A mutant form of p120(ctn) that fails to bind cadherins can still associate with RPTPmu. Our findings indicate that RPTPmu interacts with p120(ctn) independently of cadherins, and they suggest that this interaction may serve to control the tyrosine phosphorylation state of p120(ctn) at sites of cell-cell contact.  相似文献   

3.
SHPS-1 is a 120 kDa glycosylated receptor-like protein that contains immunoglobulin-like domains in its extracellular region and four potential tyrosine phosphorylation for SH2 domain binding sites in its cytoplasmic region. Epidermal growth factor (EGF) stimulated the rapid tyrosine phosphorylation of SHPS-1 and subsequent association of SHPS-1 with SHP-2, a protein tyrosine phosphatase containing SH2 domains, in Chinese hamster ovary cells overexpressing human EGF receptors. In the cells overexpressing SHPS-1, the tyrosine phosphorylation of SHPS-1 was more evident than that observed in parent cells. However, overexpression of SHPS-1 alone did not affect the activation of MAP kinase in response to EGF. These results suggest that SHPS-1 may be involved in the recruitment of SHP-2 from the cytosol to the plasma membrane in response to EGF.  相似文献   

4.
There are five isoforms of the regulatory subunit for the heterodimeric type of phosphatidylinositol 3-kinase. These five regulatory subunit isoforms were overexpressed using an adenovirus transfection system, and their own tyrosine phosphorylations and associations with various tyrosine kinase receptors were investigated. When overexpressed in CHO-PDGFR cells, the associations of these regulatory subunit isoforms with the platelet-derived growth factor receptor were similar. However, when overexpressed in CHO-IR cells, p55gamma exhibited a significantly lower ability to bind with IRS-1 upon insulin stimulation, as compared with other regulatory subunit isoforms. Furthermore, p55alpha and p55gamma were found to be tyrosine-phosphorylated. Finally, interestingly, when overexpressed in CHO-EGFR cells or A431 cells and stimulated with epidermal growth factor (EGF), phosphorylated EGF receptor was detected in p85alpha, p85beta and p50alpha immunoprecipitates, but not in p55alpha and p55gamma immunoprecipitates. In addition, EGF-induced tyrosine phosphorylation was observed in p85alpha, p85beta, p55alpha and p55gamma, but not in p50alpha, immunoprecipitates. Thus, each regulatory subunit exhibits specific responses regarding both the association with tyrosine-phosphorylated substrates and its own tyrosine phosphorylation. These results suggest that each isoform possesses specific roles in signal transduction, based on its individual tyrosine kinase receptor.  相似文献   

5.
We have derived a line of A431 human tumor cells infected with Rous sarcoma virus (RSV). The infected cells contain the RSV-transforming protein, pp60src, which has characteristic tyrosine specific protein kinase activity. As in other RSV-transformed cells, a 36,000-dalton protein is phosphorylated in RSV-infected A431 cells. Addition of epidermal growth factor (EGF) to the cells induces further phosphorylation of this protein. In contrast, this phosphoprotein is not detected in uninfected A431 cells, except when treated with EGF. Increased phosphorylation of the EGF receptor protein and of an 81,000- dalton cellular protein is dependent upon addition of EGF to the culture fluids, in both control and RSV-infected A431 cells. The results are discussed with reference to the similarities and differences between the tyrosine-specific protein kinases induced by RSV and activated by EGF.  相似文献   

6.
The monoclonal antibody 2B12 is directed toward p120, a 120-kDa cellular protein originally identified as a protein tyrosine kinase substrate in cells expressing membrane-associated oncogenic variants of pp60src. In this report, we show that p120 was tyrosine phosphorylated in avian cells expressing membrane-associated, enzymatically activated variants of c-src, including variants having structural alterations in the src homology regions 2 and 3. In contrast, p120 was not tyrosine phosphorylated in cells expressing enzymatically activated, nonmyristylated pp60src. Furthermore, p120 was tyrosine phosphorylated in avian cells expressing middle T antigen, the transforming protein of polyomavirus, as well as in rodent cells stimulated with either epidermal growth factor (EGF) or platelet-derived growth factor. Analysis of the time course of p120 tyrosine phosphorylation in EGF-stimulated cells revealed a rapid onset of tyrosine phosphorylation. In addition, both the extent and duration of p120 phosphorylation increased when cells overexpressing the EGF receptor were stimulated with EGF. Biochemical analysis showed that p120 (in both normal and src-transformed cells) was membrane associated, was myristylated, and was phosphorylated on serine and threonine residues. Hence, p120 appears to be a substrate of both nonreceptor- and ligand-activated transmembrane receptor tyrosine kinases and of serine/threonine kinases and is perhaps a component of both mitogen-stimulated and tyrosine kinase oncogene-induced signaling pathways.  相似文献   

7.
SHP-1 plays key roles in the modulation of hematopoietic cell signaling. To ascertain the impact of SHP-1 on colony-stimulating factor-1 (CSF-1)-mediated survival and proliferative signaling, we compared the CSF-1 responses of primary bone marrow macrophages (BMM) from wild-type and SHP-1-deficient motheaten (me/me) mice. CSF-1-induced protein tyrosine phosphorylation levels were similar in wild-type and me/me BMM, except for the constitutive hyperphosphorylation of a 62-kDa phosphoprotein (pp62) in me/me macrophages. pp62 was identified as the RASGAP-associated p62(DOK) and was shown to be the major CSF-1R-associated tyrosine-phosphorylated protein in CSF-1-treated BMM. p62(DOK) was found to be constitutively associated with SHP-1 in BMM and in 293T cells, co-expressing p62(dok) and either wild-type or catalytically inert SHP-1 (SHP-1 C453S). In both cell types, the interaction of SHP-1 with p62(DOK) occurred independently of p62(DOK) tyrosine phosphorylation, but only the tyrosine-phosphorylated p62(DOK) was bound by SHP-1 C453S in a far Western analysis. These findings suggest a constitutive association of SHP-1 and p62(DOK) that is either conformation-dependent or indirect as well as a direct, inducible association of the SHP-1 catalytic domain with tyrosine-phosphorylated p62(DOK). p62(DOK) hyperphosphorylation is not associated with altered CSF-1-induced RAS signaling or proliferation. However, whereas wild-type macrophages undergo cell death following CSF-1 removal, me/me macrophages exhibit prolonged survival in the absence of growth factor. Thus, p62(DOK) is a major SHP-1 substrate whose tyrosine phosphorylation correlates with growth factor-independent survival in macrophages.  相似文献   

8.
9.
Identification of Src phosphorylation sites in the catenin p120ctn   总被引:8,自引:0,他引:8  
p120-catenin (p120(ctn)) interacts with the cytoplasmic tail of cadherins and is thought to regulate cadherin clustering during formation of adherens junctions. Several observations suggest that p120 can both positively and negatively regulate cadherin adhesiveness depending on signals that so far remain unidentified. Although p120 tyrosine phosphorylation is a leading candidate, the role of this modification in normal and Src-transformed cells remains unknown. Here, as a first step toward pinpointing this role, we have employed two-dimensional tryptic mapping to directly identify the major sites of Src-induced p120 phosphorylation. Eight sites were identified by direct mutation of candidate tyrosines to phenylalanine and elimination of the accompanying spots on the two-dimensional maps. Identical sites were observed in vitro and in vivo, strongly suggesting that the physiologically important sites have been correctly identified. Changing all of these sites to phenylalanine resulted in a p120 mutant, p120-8F, that could not be efficiently phosphorylated by Src and failed to interact with SHP-1, a tyrosine phosphatase shown previously to interact selectively with tyrosine-phosphorylated p120 in cells stimulated with epidermal growth factor. Using selected tyrosine to phenylalanine p120 mutants as dominant negative reagents, it may now be possible to selectively block events postulated to be dependent on p120 tyrosine phosphorylation.  相似文献   

10.
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo.  相似文献   

11.
Genistein, a specific inhibitor of tyrosine-specific protein kinases   总被引:138,自引:0,他引:138  
Tyrosine-specific protein kinase activity of the epidermal growth factor (EGF) receptor, pp60v-src and pp110gag-fes was inhibited in vitro by an isoflavone genistein. The inhibition was competitive with respect to ATP and noncompetitive to a phosphate acceptor, histone H2B. By contrast, genistein scarcely inhibited the enzyme activities of serine- and threonine-specific protein kinases such as cAMP-dependent protein kinase, phosphorylase kinase, and the Ca2+/phospholipid-dependent enzyme protein kinase C. When the effect of genistein on the phosphorylation of the EGF receptor was examined in cultured A431 cells, EGF-stimulated serine, threonine, and tyrosine phosphorylation was decreased. Phosphoamino acid analysis of total cell proteins revealed that genistein inhibited the EGF-stimulated increase in phosphotyrosine level in A431 cells.  相似文献   

12.
The initial pathophysiological events that characterize CCK-hyperstimulation pancreatitis include the breakdown of the actin filament system and disruption of cadherin-catenin protein complexes. Cadherins and catenins are part of adherens junctions, which may act as anchor for the cellular actin filament system. We examined the composition and regulation of adherens junctions during CCK-induced acinar cell damage. Freshly isolated CCK-stimulated rat pancreatic acini were examined for actin filaments and functional adherens junctions by immunocytology and laser confocal scanning microscopy or by coprecipitation and immunoblotting for E-cadherin, beta- and alpha-catenin, p120(ctn), and phosphotyrosine. In addition to E-cadherin and beta-catenin, acinar cells express the cadherin-regulatory protein p120(ctn) and the attachment protein alpha-catenin. Both colocalize and coimmunoprecipitate with E-cadherin in one complex, and all colocalize with the terminal actin web. Supramaximal secretory CCK concentrations (10 nM) initiated tyrosine phosphorylation of p120(ctn) but not of beta-catenin within 2 min, preceding the breakdown of the terminal actin web by several minutes. Under these conditions, the cadherin-catenin association within the adherens junction complex remained intact. We describe for the first time supramaximal CCK-dependent tyrosine phosphorylation of the adherens junction protein p120(ctn) and demonstrate the presence of an intact adherens junction protein complex in acinar cells. p120(ctn) may participate in the actin filament breakdown during experimental conditions mimicking pancreatitis.  相似文献   

13.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

14.
The regulatory mechanism through which the phospholipase D (PLD) isoforms PLD1 and PLD2 are activated is poorly understood. We investigated the possibility that the PLD isozymes are differentially regulated in response to pharmacologic stimulants in cells. In this report, we demonstrate for the first time that H2O2 and EGF differentially induce tyrosine phosphorylation of the PLD isozymes in A431 cells, which express both PLD1 and PLD2. H2O2 induced tyrosine phosphorylation of PLD1 and PLD2, whereas EGF only caused the tyrosine phosphorylation of PLD2. Both agents also induced phosphorylation of the EGF receptor. Interestingly, the PLD isozymes were associated with the EGF receptor and PKC-alpha in a ligand independent manner. Activation of PLD by H2O2 and EGF nearly correlated with tyrosine phosphorylation of the protein in PLD1 immune complexes. Activation of PLD by both agents was inhibited by the PKC inhibitor, Ro 31-8220, and by the down-regulation of PKC. Pretreatment of the cells with the tyrosine kinase inhibitor tyrphostin AG1478 resulted in inhibition of the H2O2 and EGF-induced tyrosine phosphorylation and PLD activation. These results indicate that H2O2 and EGF induce differential tyrosine phosphorylation of PLD isozymes. Also, the activation of PLD by these agonists involves tyrosine phosphorylation and PKC activation.  相似文献   

15.
Bacterial lipopolysaccharide (LPS) is a key mediator in the vascular leak syndromes associated with Gram-negative bacterial infections. LPS opens the paracellular pathway in pulmonary vascular endothelia through protein tyrosine phosphorylation. We now have identified the protein-tyrosine kinases (PTKs) and their substrates required for LPS-induced protein tyrosine phosphorylation and opening of the paracellular pathway in human lung microvascular endothelial cells (HMVEC-Ls). LPS disrupted barrier integrity in a dose- and time-dependent manner, and prior broad spectrum PTK inhibition was protective. LPS increased tyrosine phosphorylation of zonula adherens proteins, VE-cadherin, gamma-catenin, and p120(ctn). Two SRC family PTK (SFK)-selective inhibitors, PP2 and SU6656, blocked LPS-induced increments in tyrosine phosphorylation of VE-cadherin and p120(ctn) and paracellular permeability. In HMVEC-Ls, c-SRC, YES, FYN, and LYN were expressed at both mRNA and protein levels. Selective small interfering RNA-induced knockdown of c-SRC, FYN, or YES diminished LPS-induced SRC Tyr(416) phosphorylation, tyrosine phosphorylation of VE-cadherin and p120(ctn), and barrier disruption, whereas knockdown of LYN did not. For VE-cadherin phosphorylation, knockdown of either c-SRC or FYN provided total protection, whereas YES knockdown was only partially protective. For p120(ctn) phosphorylation, knockdown of FYN, c-SRC, or YES each provided comparable but partial protection. Toll-like receptor 4 (TLR4) was expressed both on the surface and intracellular compartment of HMVEC-Ls. Prior knockdown of TLR4 blocked both LPS-induced SFK activation and barrier disruption. These data indicate that LPS recognition by TLR4 activates the SFKs, c-SRC, FYN, and YES, which, in turn, contribute to tyrosine phosphorylation of zonula adherens proteins to open the endothelial paracellular pathway.  相似文献   

16.
Yu J  Miao Y  Xu H  Liu Y  Jiang G  Stoecker M  Wang E  Wang E 《PloS one》2012,7(5):e37008
P120-catenin (p120ctn) exerts important roles in regulating E-cadherin and invasiveness in cancer cells. However, the mechanisms by which p120ctn isoforms 1 and 3 modulate E-cadherin expression are poorly understood. In the current study, HBE, H460, SPC and LTE cell lines were used to examine the effects of p120ctn isoforms 1A and 3A on E-cadherin expression and cell invasiveness. E-cadherin was localized on the cell membrane of HBE and H460 cells, while it was confined to the cytoplasm in SPC and LTE cells. Depletion of endogenous p120ctn resulted in reduced E-cadherin expression; however, p120ctn ablation showed opposite effects on invasiveness in the cell lines by decreasing invasiveness in SPC and LTE cells and increasing it in HBE and H460 cells. Restitution of 120ctn isoform 1A restored E-cadherin on the cell membrane and blocked cell invasiveness in H460 and HBE cells, while it restored cytoplasmic E-cadherin and enhanced cell invasiveness in SPC and LTE cells. P120ctn isoform 3A increased the invasiveness in all four cell lines despite the lack of effect on E-cadherin expression, suggesting a regulatory pathway independent of E-cadherin. Moreover, five p120ctn isoform 1A deletion mutants were constructed and expressed in H460 and SPC cells. The results showed that only the M4 mutant, which contains N-terminal 1-54 amino acids and the Armadillo repeat domain, was functional in regulating E-cadherin and cell invasiveness, as observed in p120ctn isoform 1A. In conclusion, the N-terminal 1-54 amino acid sequence and Armadillo repeat domain of p120ctn isoform 1A are indispensable for regulating E-cadherin protein. P120ctn isoform 1A exerts opposing effects on cell invasiveness, corresponding to the subcellular localization of E-cadherin.  相似文献   

17.
p120 Catenin (p120(ctn)) regulates cadherin stability, and thus facilitates strong cell-cell adhesion. Previously, we demonstrated that Gα(12) interacts with p120(ctn). In the present study, we have delineated a region of p120(ctn) that binds to Gα(12). We report that the N-terminal region of p120(ctn) (amino acids 1-346) is necessary and sufficient for the interaction. While the coiled-coiled domain and a charged region, comprising a.a 102-120, were found to be dispensable, amino acids 121-323 were required for p120(ctn) binding to Gα(12). This region harbors the phosphorylation domain of p120(ctn) and has been postulated as important for RhoA regulation. Downregulation of Src family kinase-induced tyrosine phosphorylation of p120(ctn) was observed in the presence of activated Gα(12). This down-regulation was triggered by three different Gα(12) mutants uncoupled from RhoA signalling. Furthermore, a dominant active form of RhoA did not reduce Src-induced phosphoryaltion of p120(ctn). In summary, our results suggest that Gα(12) binds to p120(ctn) and modulates its phosphorylation status through a Rho-independent mechanism. Gα(12) emerges as an important regulator of p120(ctn) function, and possibly of cadherin-mediated adhesion and/or cell motility.  相似文献   

18.
The SH2-containing protein tyrosine phosphatase1 (SHP-1) is important for signaling from immune receptors. To investigate the role of SHP-1 in mast cells we overexpressed the wild-type and the phosphatase-inactive forms of SHP-1 in rat basophilic leukemia 2H3 (RBL-2H3) mast cell line. The phosphatase-inactive SHP-1 (C453S or D419A) retains its ability to bind tyrosine phosphorylated substrates and thereby competes with the endogenous wild-type enzyme. Overexpression of wild-type SHP-1 decreased the FcepsilonRI aggregation-induced tyrosine phosphorylation of the beta and gamma subunits of the receptor whereas the dominant negative SHP-1 enhanced phosphorylation. There were also similar changes in the tyrosine phosphorylation of Syk. However, receptor-induced histamine release in the cells expressing either wild-type or dominant negative SHP-1 was similar to that in the parental control cells. In contrast, compared with the parental RBL-2H3 cells, FcepsilonRI-induced c-Jun N-terminal kinase phosphorylation and the level of TNF-alpha mRNA was increased in the cells overexpressing wild-type SHP-1 whereas the dominant negative SHP-1 had the opposite effect. The substrate-trapping mutant SHP1/D419A identified pp25 and pp30 as two major potential substrates of SHP-1 in RBL-2H3 cells. Therefore, SHP-1 may play a role in allergy and inflammation by regulating mast cell cytokine production.  相似文献   

19.
Monoclonal antibodies against phosphotyrosine were used to study tyrosine phosphorylation in human epidermal carcinoma A431 cells in vivo. Incubation of A431 cells with the epidermal growth factor (EGF) leads to tyrosine phosphorylation of the EGF receptor; the phosphotyrosine content in cellular EGF receptors increases 50-100-fold in the presence of the growth factor. The maximum level of the receptor autophosphorylation is reached on the 5th min and is then held constant during 90-min incubation with EGF. After preincubation of A431 cells with phorbol-12-myristoyl-13-acetate (PMA) or calcium ionophore A23187 the receptor autophosphorylation decreases significantly. After addition of A23187 and EGTA to the preincubation medium the phosphotyrosine content in cellular EGF receptors stimulated by the growth factor reaches the control level i.e., that observed in the absence of the ionophore. After preincubation of cells in the presence of phorbol ester and H-7 (protein kinase C inhibitor) the level of EGF receptor autophosphorylation does not practically differ from that of control.  相似文献   

20.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号