首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Higher plant glycosyltransferases   总被引:5,自引:0,他引:5  
Ross J  Li Y  Lim E  Bowles DJ 《Genome biology》2001,2(2):reviews3004.1-reviews30046
Uridine diphosphate (UDP) glycosyltransferases (UGTs) mediate the transfer of glycosyl residues from activated nucleotide sugars to acceptor molecules (aglycones), thus regulating properties of the acceptors such as their bioactivity, solubility and transport within the cell and throughout the organism. A superfamily of over 100 genes encoding UGTs, each containing a 42 amino acid consensus sequence, has been identified in the model plant Arabidopsis thaliana. A phylogenetic analysis of the conserved amino acids encoded by these Arabidopsis genes reveals the presence of 14 distinct groups of UGTs in this organism. Genes encoding UGTs have also been identified in several other higher plant species. Very little is yet known about the regulation of plant UGT genes or the localization of the enzymes they encode at the cellular and subcellular levels. The substrate specificities of these UGTs are now beginning to be established and will provide a foundation for further analysis of this large enzyme superfamily as well as a platform for future biotechnological applications.  相似文献   

2.
Glycosyltransferases (GTs) (EC 2.4.x.y) catalyze the transfer of sugar moieties to a wide range of acceptor molecules, such as sugars, lipids, proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites. These enzymes can be classified into at least 92 families, of which family 1 glycosyltransferases (GT1), often referred to as UDP glycosyltransferases (UGTs), is the largest in the plant kingdom. To understand how UGTs expanded in both number and function during evolution of land plants, we screened genome sequences from six plants (Physcomitrella patens, Selaginella moellendorffii, Populus trichocarpa, Oryza sativa, Arabidopsis thaliana and Arabidopsis lyrata) for the presence of a conserved UGT protein domain. Phylogenetic analyses of the UGT genes revealed a significant expansion of UGTs, with lineage specificity and a higher duplication rate in vascular plants after the divergence of Physcomitrella. The UGTs from the six species fell into 24 orthologous groups that contained genes derived from the common ancestor of these six species. Some orthologous groups contained multiple UGT families with known functions, suggesting that UGTs discriminate compounds as substrates in a lineage-specific manner. Orthologous groups containing only a single UGT family tend to play a crucial role in plants, suggesting that such UGT families may have not expanded because of evolutionary constraints.  相似文献   

3.
The complete sequence of the Arabidopsis genome enables definitive characterization of multigene families and analysis of their phylogenetic relationships. Using a consensus sequence previously defined for glycosyltransferases that use small-molecular-weight acceptors, 107 gene sequences were identified in the Arabidopsis genome and used to construct a phylogenetic tree. Screening recombinant proteins for their catalytic activities in vitro has revealed enzymes active toward physiologically important substrates, including hormones and secondary metabolites. The aim of this study has been to use the phylogenetic relationships across the entire family to explore the evolution of substrate recognition and regioselectivity of glucosylation. Hydroxycoumarins have been used as the model substrates for the analysis in which 90 sequences have been assayed and 48 sequences shown to recognize these compounds. The study has revealed activity in 6 of the 14 phylogenetic groups of the multigene family, suggesting that basic features of substrate recognition are retained across substantial evolutionary periods.  相似文献   

4.
For almost a decade, our knowledge on the organisation of the family 1 UDP‐glycosyltransferases (UGTs) has been limited to the model plant A. thaliana. The availability of other plant genomes represents an opportunity to obtain a broader view of the family in terms of evolution and organisation. Family 1 UGTs are known to glycosylate several classes of plant secondary metabolites. A phylogeny reconstruction study was performed to get an insight into the evolution of this multigene family during the adaptation of plants to life on land. The organisation of the UGTs in the different organisms was also investigated. More than 1500 putative UGTs were identified in 12 fully sequenced and assembled plant genomes based on the highly conserved PSPG motif. Analyses by maximum likelihood (ML) method were performed to reconstruct the phylogenetic relationships existing between the sequences. The results of this study clearly show that the UGT family expanded during the transition from algae to vascular plants and that in higher plants the clustering of UGTs into phylogenetic groups appears to be conserved, although gene loss and gene gain events seem to have occurred in certain lineages. Interestingly, two new phylogenetic groups, named O and P, that are not present in A. thaliana were discovered.  相似文献   

5.
Glycosylated metabolites generated by UDP‐dependent glycosyltransferases (UGTs) play critical roles in plant interactions with the environment as well as human and animal nutrition. The evolution of plant UGTs has previously been explored, but with a limited taxon sampling. In this study, 65 fully sequenced plant genomes were analyzed, and stringent criteria for selection of candidate UGTs were applied to ensure a more comprehensive taxon sampling and reliable sequence inclusion. In addition to revealing the overall evolutionary landscape of plant UGTs, the phylogenomic analysis also resolved the phylogenetic association of UGTs from free‐sporing plants and gymnosperms, and identified an additional UGT group (group R) in seed plants. Furthermore, lineage‐specific expansions and contractions of UGT groups were detected in angiosperms, with the total number of UGTs per genome remaining constant generally. The loss of group Q UGTs in Poales and Brassicales, rather than functional convergence in the group Q containing species, was supported by a gene tree of group Q UGTs sampled from many species, and further corroborated by the absence of group Q homologs on the syntenic chromosomal regions in Arabidopsis thaliana (Brassicales). Branch‐site analyses of the group Q UGT gene tree allowed for identification of branches and amino acid sites that experienced episodic positive selection. The positively selected sites are located on the surface of a representative group Q UGT (PgUGT95B2), away from the active site, suggesting their role in protein folding/stability or protein–protein interactions.  相似文献   

6.
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.  相似文献   

7.
Family 28 belongs to the largest families of glycoside hydrolases. It covers several enzyme specificities of bacterial, fungal, plant and insect origins. This study deals with all available amino acid sequences of family 28 members. First, it focuses on the detailed analysis of 115 sequences of polygalacturonases yielding their evolutionary tree. The large data set allowed modification of some of the existing family 28 sequence characteristics and to draw the sequence features specific for bacterial and fungal exopolygalacturonases discriminating them from the endopolygalacturonases. The evolutionary tree reflects both the taxonomy and specificity so that bacterial, fungal and plant enzymes form their own clusters, the endo- and exo-mode of action being respected, too. The only insect (animal) representative is most related to fungal endopolygalacturonases. The present study brings further: (i) the analysis of available rhamnogalacturonase sequences; (ii) the elucidation of relatedness between the recently added member, the endo-xylogalacturonan hydrolase and the rest of the family; and (iii) revealing the sequence features characteristic of the individual enzyme specificities and the evolutionary relationships within the entire family 28. The disulfides common for the individual enzyme groups were also proposed. With regard to functionally important residues of polygalacturonases, xylogalacturonan hydrolase possesses all of them, while the rhamnogalacturonases, known to lack the histidine residue (His223; Aspergillus niger polygalacturonase II numbering), have a further tyrosine (Tyr291) replaced by a conserved tryptophan. Evolutionarily, the xylogalacturonan hydrolase is most related to fungal exopolygalacturonases and the rhamnogalacturonases form their own cluster on the adjacent branch.  相似文献   

8.
Triterpenoid saponins are naturally occurring structurally diverse glycosides of triterpenes that are widely distributed among plant species. Great interest has been expressed by pharmaceutical and agriculture industries for the glycosylation of triterpenes. Such modifications alter their taste and bio-absorbability, affect their intra?/extracellular transport and storage in plants, and induce novel biological activities in the human body. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze glycosylation using UDP sugar donors. These enzymes belong to a multigene family and recognize diverse natural products, including triterpenes, as the acceptor molecules. For this review, we collected and analyzed all of the UGT sequences found in Arabidopsis thaliana as well as 31 other species of triterpene-producing plants. To identify potential UGTs with novel functions in triterpene glycosylation, we screened and classified those candidates based on similarity with UGTs from Panax ginseng, Glycine max, Medicago truncatula, Saponaria vaccaria, and Barbarea vulgaris that are known to function in glycosylate triterpenes. We highlight recent findings on UGT inducibility by methyl jasmonate, tissue-specific expression, and subcellular localization, while also describing their catalytic activity in terms of regioselectivity for potential key UGTs dedicated to triterpene glycosylation in plants. Discovering these new UGTs expands our capacity to manipulate the biological and physicochemical properties of such valuable molecules.  相似文献   

9.
On the origin of family 1 plant glycosyltransferases   总被引:17,自引:0,他引:17  
The phylogeny of highly divergent multigene families is often difficult to validate but can be substantiated by inclusion of data outside of the phylogeny, such as signature motifs, intron splice site conservation, unique substitutions of conserved residues, similar gene functions, and out groups. The Family 1 Glycosyltransferases (UGTs) comprises such a highly divergent, polyphyletic multigene family. Phylogenetic comparisons of UGTs from plants, animals, fungi, bacteria, and viruses reveal that plant UGTs represent three distinct clades. The majority of the plant sequences appears to be monophyletic and have diverged after the bifurcation of the animal/fungi/plant kingdoms. The two minor clades contain the sterol and lipid glycosyltransferases and each show more homology to non-plant sequences. The lipid glycosyltransferase clade is homologous to bacterial lipid glycosyltransferases and reflects the bacterial origin of chloroplasts. The fully sequenced Arabidopsis thaliana genome contains 120 UGTs including 8 apparent pseudogenes. The phylogeny of plant glycosyltransferases is substantiated with complete phylogenetic analysis of the A. thaliana UGT multigene family, including intron-exon organization and chromosomal localization.  相似文献   

10.
11.
The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the detoxification of carcinogens as well as clearance of anti-cancer drugs. In humans, 19 UGT family members have been identified and are expressed in a tissue specific manner throughout the body. However, the UGTs have not been previously characterized in melanocytes or melanoma. In the present study, UGT2B7, UGT2B10, and UGT2B15 were identified as being normally expressed in human melanocytes. The same three UGT family members were also expressed in the primary melanoma cell line WM115. No UGT expression was detected in another primary melanoma cell line, WM3211, or in any metastatic melanoma cell line examined. These results suggest that UGT expression is lost during melanoma progression. Treatment of WM3211 or metastatic melanoma cell lines with anti-cancer agents (including vemurafenib) induced expression of UGT2B7, UGT2B10 and UGT2B15 demonstrating that melanoma cells retain the ability to re-express these same three UGTs. The corresponding increase in glucuronidation activity in melanoma cells following anti-cancer treatment was also observed. Furthermore, knockdown of UGT2B7 in WM115 cells sensitized these cells to treatment by adriamycin and epirubicin indicating that UGT2B7 is involved in resistance to these drugs. However, knockdown of UGT2B7 had no effect on temozolomide toxicity. Taken together, these results clearly demonstrate a role for UGTs in melanoma etiology. Since the UGTs are drug metabolism enzymes, we propose that re-expression of the UGTs constitutes a previously unsuspected mechanism for intratumoral drug resistance in melanoma.  相似文献   

12.
Messner B  Thulke O  Schäffner AR 《Planta》2003,217(1):138-146
Arabidopsis thaliana Heynh. harbors UDP-glucose-dependent glucosyltransferase (UGT; EC 2.4.1.-) activities that are able to glucosylate xenobiotic substrates as a crucial step in their detoxification, similar to other plants. However, it has remained elusive whether side-activities of UGTs acting on endogenous substrates could account for that property. Therefore, seven recombinantly expressed A. thaliana enzymes were tested using the phytotoxic xenobiotic model compound 2,4,5-trichlorophenol (TCP) as a substrate. The enzymes were selected from the large Arabidopsis UGT gene family because their previously identified putative endogenous substrates comprised both carboxylic acid, and phenolic and aliphatic hydroxyl moieties as biochemical targets. In addition, UGT75D1, which was shown to accept the endogenous flavonoid kaempferol as a substrate, was included. All enzymes tested, except the sterol-conjugating UGT80A2, glucosylated TCP as a parallel activity. The K(m) values for TCP ranged from 0.059 to 1.25 mM. When tested at saturating concentrations of the native substrates the glucosylation of TCP by the glucose-ester-forming UGT84A1 and UGT84A2 was suppressed by p-coumaric acid and sinapic acid, respectively. In contrast, the activities of UGT72E2 and UGT75D1 toward their phenolic native substrates and the xenobiotic TCP were mutually inhibited. TCP was a competitive inhibitor of sinapyl alcohol glucosylation by UGT72E2. These overlapping in vitro activities suggest cross-talk between the detoxification of xenobiotics and endogenous metabolism at the biochemical level, depending on the presence of competing substrates and enzymes.  相似文献   

13.
(Iso)flavonoids are a diverse group of plant secondary metabolites with important effects on plant, animal and human health. They exist in various glycosidic forms. Glycosylation, which may determine their bioactivities and functions, is controlled by specific plant uridine diphosphate glycosyltransferases (UGTs). We describe a new multifunctional (iso)flavonoid glycosyltransferase, UGT85H2, from the model legume Medicago truncatula with activity towards a number of phenylpropanoid-derived natural products including the flavonol kaempferol, the isoflavone biochanin A, and the chalcone isoliquiritigenin. The crystal structure of UGT85H2 has been determined at 2.1 A resolution, and reveals distinct structural features that are different from those of other UGTs and related to the enzyme's functions and substrate specificities. Structural and comparative analyses revealed the putative binding sites for the donor and acceptor substrates that are located in a large cleft formed between the two domains of the enzyme, and indicated that Trp360 may undergo a conformational change after sugar donor binding to the enzyme. UGT85H2 has higher specificity for flavonol than for isoflavone. Further substrate docking combined with enzyme activity assay and kinetic analysis provided structural insights into this substrate specificity and preference.  相似文献   

14.
Molecular phylogeny among catalase-peroxidases, cytochrome c peroxidases, and ascorbate peroxidases was analysed. Sixty representative sequences covering all known subgroups of class I of the superfamily of bacterial, fungal, and plant heme peroxidases were selected. Each sequence analysed contained the typical peroxidase motifs evolved to bind effectively the prosthetic heme group, enabling peroxidatic activity. The N-terminal and C-terminal domains of catalase-peroxidases matching the ancestral tandem gene duplication event were treated separately in the phylogenetic analysis to reveal their specific evolutionary history. The inferred unrooted phylogenetic tree obtained by three different methods revealed the existence of four clearly separated clades (C-terminal and N-terminal domains of catalase-peroxidases, ascorbate peroxidases, and cytochrome c peroxidases) which were segregated early in the evolution of this superfamily. From the results, it is obvious that the duplication event in the gene for catalase-peroxidase occurred in the later phase of evolution, in which the individual specificities of the peroxidase families distinguished were already formed. Evidence is presented that class I of the heme peroxidase superfamily is spread among prokaryotes and eukaryotes, obeying the birth-and-death process of multigene family evolution.  相似文献   

15.
The genome sequencing of Arabidopsis (Arabidopsis thaliana) has revealed that secondary metabolism plant glycosyltransferases (UGTs) are encoded by an unexpectedly large multigenic family of 120 members. Very little is known about their actual function in planta, in particular during plant pathogen interactions. Among them, members of the group D are of particular interest since they are related to UGTs involved in stress-inducible responses in other plant species. We provide here a detailed analysis of the expression profiles of this group of Arabidopsis UGTs following infection with Pseudomonas syringae pv tomato or after treatment with salicylic acid, methyljasmonate, and hydrogen peroxide. Members of the group D displayed distinct induction profiles, indicating potential roles in stress or defense responses notably for UGT73B3 and UGT73B5. Analysis of UGT expression in Arabidopsis defense-signaling mutants further revealed that their induction is methyljasmonate independent, but partially salicylic acid dependent. T-DNA tagged mutants (ugt73b3 and ugt73b5) exhibited decreased resistance to P. syringae pv tomato-AvrRpm1, indicating that expression of the corresponding UGT genes is necessary during the hypersensitive response. These results emphasize the importance of plant secondary metabolite UGTs in plant-pathogen interactions and provide foundation for future understanding of the exact role of UGTs during the hypersensitive response.  相似文献   

16.
植物尿苷二磷酸糖基转移酶超家族晶体结构   总被引:2,自引:0,他引:2  
糖基转移酶(Glycosyltransferases,GTs)催化的糖基化反应几乎是植物中最为重要的反应。GTs家族1中的植物UGTs(UDP-dependent glycosyltransferases)成员主要运用尿苷二磷酸活化的糖作为糖基供体,因其成员众多、生物功能多样,仅仅通过序列比较和进化分析不能够精确预测其复杂的底物专一性和特有的催化机制,需要后续生化实验的进一步验证。文中主要总结了目前在蛋白结构数据库(Protein Data Bank,PDB)中报道的5种植物UGTs的晶体三维结构和定点突变功能研究进展。详细介绍了植物UGTs整体结构的特点以及蛋白与底物相互作用的细节,为更有效地生化定性UGTs以便深入理解底物专一性提供了有力的工具,从而为植物UGTs在酶工程和基因工程中的应用奠定基础。  相似文献   

17.
18.
Haloalkane dehalogenases (HLDs) are enzymes that catalyze the cleavage of carbon-halogen bonds by a hydrolytic mechanism. Although comparative biochemical analyses have been published, no classification system has been proposed for HLDs, to date, that reconciles their phylogenetic and functional relationships. In the study presented here, we have analyzed all sequences and structures of genuine HLDs and their homologs detectable by database searches. Phylogenetic analyses revealed that the HLD family can be divided into three subfamilies denoted HLD-I, HLD-II, and HLD-III, of which HLD-I and HLD-III are predicted to be sister-groups. A mismatch between the HLD protein tree and the tree of species, as well as the presence of more than one HLD gene in a few genomes, suggest that horizontal gene transfers, and perhaps also multiple gene duplications and losses have been involved in the evolution of this family. Most of the biochemically characterized HLDs are found in the HLD-II subfamily. The dehalogenating activity of two members of the newly identified HLD-III subfamily has only recently been confirmed, in a study motivated by this phylogenetic analysis. A novel type of the catalytic pentad (Asp-His-Asp+Asn-Trp) was predicted for members of the HLD-III subfamily. Calculation of the evolutionary rates and lineage-specific innovations revealed a common conserved core as well as a set of residues that characterizes each HLD subfamily. The N-terminal part of the cap domain is one of the most variable regions within the whole family as well as within individual subfamilies, and serves as a preferential site for the location of relatively long insertions. The highest variability of discrete sites was observed among residues that are structural components of the access channels. Mutations at these sites modify the anatomy of the channels, which are important for the exchange of ligands between the buried active site and the bulk solvent, thus creating a structural basis for the molecular evolution of new substrate specificities. Our analysis sheds light on the evolutionary history of HLDs and provides a structural framework for designing enzymes with new specificities.  相似文献   

19.
Glycosyltransferases constitute a large family of enzymes across all domains of life, but knowledge of their biochemical function remains largely incomplete, particularly in the context of plant specialized metabolism. The labdane diterpenes represent a large class of phytochemicals with many pharmacological benefits, such as anti-inflammatory, hepatoprotective, and anticarcinogenic. The medicinal plant kalmegh (Andrographis paniculata) produces bioactive labdane diterpenes; notably, the C19-hydroxyl diterpene (andrograpanin) is predominantly found as C19-O-glucoside (neoandrographolide), whereas diterpenes having additional hydroxylation(s) at C3 (14-deoxy-11,12-didehydroandrographolide) or C3 and C14 (andrographolide) are primarily detected as aglycones, signifying scaffold-selective C19-O-glucosylation of diterpenes in planta. Here, we analyzed UDP-glycosyltransferase (UGT) activity and diterpene levels across various developmental stages and tissues and found an apparent correlation of UGT activity with the spatiotemporal accumulation of neoandrographolide, the major diterpene C19-O-glucoside. The biochemical analysis of recombinant UGTs preferentially expressed in neoandrographolide-accumulating tissues identified a previously uncharacterized UGT86 member (ApUGT12/UGT86C11) that catalyzes C19-O-glucosylation of diterpenes with strict scaffold selectivity. ApUGT12 localized to the cytoplasm and catalyzed diterpene C19-O-glucosylation in planta. The substrate selectivity demonstrated by the recombinant ApUGT12 expressed in plant and bacterium hosts was comparable to native UGT activity. Recombinant ApUGT12 showed significantly higher catalytic efficiency using andrograpanin compared with 14-deoxy-11,12-didehydroandrographolide and trivial activity using andrographolide. Moreover, ApUGT12 silencing in plants led to a drastic reduction in neoandrographolide content and increased levels of andrograpanin. These data suggest the involvement of ApUGT12 in scaffold-selective C19-O-glucosylation of labdane diterpenes in plants. This knowledge of UGT86 function might help in developing plant chemotypes and synthesis of pharmacologically relevant diterpenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号