首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The polyethylene glycol (PEG) treatment of ciprofloxacin-Indion 234 complex was aimed to retard rapid ion exchange drug release at gastric pH. Ciprofloxacin loading on Indion 234 was performed in a batch process, and the amount of K+ in Indion 234 displaced by drug with time was studied as equilibrium constant KDM. Drug-resin complex (DRC) was treated with aqueous PEG solution (0.5%–2% wt/vol) of different molecular weights (MWs) for 2 to 30 minutes. The PEG-treated ciprofloxacin-Indion 234 complex was evaluated for particle size, water absorption time, and drug release at gastric pH. During drug loading on Indion 234, the equilibrium constant (KDM) increased rapidly up to 20 minutes with efficient drug loading. Increased time of immersion of the drug resinate in PEG solutions significantly retained higher size particles upon dehydration. The larger DRC particles showed longer water absorption times owing to compromised hydrating power. The untreated DRC showed insignificant drug release in deionized water; while at gastric pH, ciprofloxacin release was complete in 90 minutes. A trend of increased residual particle size, proportionate increase in water absorption time, and hence the retardation of release with time of immersion was evident in PEG-treated DRC. The time of immersion of DRC in PEG-treated DRC. The time of immersion of DRC in PEG solution had predominant release retardant effect, while the effect of molecular weight of PEG was insignificant. Thus, PEG treatment of DRC successfully retards ciprofloxacin ion exchange release in acidic pH.  相似文献   

2.
The purpose of this research was to mask the bitter taste of Diphenhydramine Hydrochloride (DPH) using cation exchange resins. Indion 234 and Tulsion 343 that contained crosslinked polyacrylic backbone were used. The drug resin complexes (DRC) were prepared by batch process by taking drug: resin ratios 1:1, 1:2, and 1:3. The optimum drug: resin ratio and the time required for maximum complexation was determined. The drug resinates were evaluated for the drug content, taste, micromeritic properties drug release and X-ray diffraction (PXRD). Effervescent and dispersible tablets were developed from optimum drug: resin ratios of 1:2 and 1:1. The formulations were evaluated for uniformity of dispersion, disintegration time, and in vitro dissolution. The X-ray diffraction study confirmed the monomolecularity of entrapped drug in the resin beads. The taste evaluation depicted the successful taste masking of DPH with drug resin complexes. The drug release of 95% in 15 min was observed for effervescent and dispersible tablets.  相似文献   

3.
Shah PP  Mashru RC 《AAPS PharmSciTech》2008,9(3):1025-1030
The purpose of this research was to mask the intensely bitter taste of primaquine phosphate (PRM) and to formulate suspension powder (cachets) of the taste masked drug. Taste masking was done using beta-cyclodextrin. To characterize and formulate taste masked cachets of PRM, the 1:25 M physical mixture was selected based on bitterness score. Phase solubility studies, fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD) were performed to identify the physicochemical interaction between drug and carrier, hence its effect on dissolution. Cachets were evaluated for angle of repose, sedimentation characterization and pH. In vitro drug release studies for physical mixture and kneaded system were performed at pH, 1.2 and 6.8. Bitterness score was evaluated using gustatory sensation test. Phase solubility studies showed weak interaction between PRM and CD. The FTIR, DSC and XRPD studies indicated inclusion complexation in physical mixture and kneaded system. In addition, kneaded system and physical mixture exhibited better drug release at pH 1.2 and negligible effect at pH 6.8. Cachets prepared using physical mixture, (DS24), showed complete bitter taste masking and easy redispersibility. Taste evaluation of cachets in human volunteers rated tasteless with a score of 0 to DS24 and 3 to DS25. Thus, results conclusively demonstrated successful taste masking and formulation of cachets with taste masked drug.  相似文献   

4.
Halder A  Sa B 《AAPS PharmSciTech》2006,7(2):E105-E112
The purpose of this study was to examine the suitability of polystyrene-coated (PS-coated) microcapsules of drug-resin complex for achieving prolonged release of diltiazem-HCl, a highly water-soluble drug, in simulated gastric and intestinal fluid. The drug was bound to Indion 254, a cation-exchange resin, and the resulting resinate was microencapsulated with PS using an oil-in-water emulsion-solvent evaporation method. The effect of various formulation parameters on the characteristics of the microcapsules was studied. Mean diameter and encapsulation efficiency of the microcapsules rose with an increase in the concentration of emulsion stabilizer and the coat/core ratio, while the same characteristics tended to decrease with an increase in the volume of the organic disperse phase. The desorption of drug from the uncoated resinate was quite rapid and independent of the pH of the dissolution media. On the other hand, the drug release from the microcapsules was prolonged for different periods of time depending on the formulation parameters and was also found to be independent of the pH of the dissolution media. Both the encapsulation efficiency and the retardation of drug release were found to be dependent on the uniformity of coating, which in turn was influenced by the formulation parameters. Kinetic studies revealed that the desorption of drug from the resinate obeyed the typical particle diffusion process, whereas the drug release from the microencapsulated resinate followed the diffusion-controlled model in accordance with the Higuchi equation. PS appeared to be a suitable polymer to provide prolonged release of diltiazem independent of the pH of the dissolution media.  相似文献   

5.
In the present research work chitosan has been blended with different amounts of polycaprolactone (PCL) (80:20, 75:25, 60:40 and 50:50) for using them for control delivery of ofloxacin. The blends were characterized by Fourier transmission infra red spectroscopy (FTIR), UV–visible spectroscopy (UV), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis. From the FTIR spectra the various groups present in chitosan and PCL blend were monitored. The homogeneity, morphology and crystallinity of the blends were ascertained from SEM and XRD data, respectively. The swelling studies have been measured at different drug loading. The kinetics of the drug delivery system has been systematically studied. Drug release kinetics was analyzed by plotting the cumulative release data vs. time by fitting to an exponential equation which indicated the non-Fickian type of kinetics. The drug release was investigated at different pH medium and it was found that the drug release depends upon the pH medium as well as the nature of matrix.  相似文献   

6.
This work reports synthesis of pH-responsive alginate/chitosan hydrogel spheres with the average diameter of 2.0 ± 0.05 mm, which contain cefotaxime that is an antibiotic of the cefalosporine group. The spheres provided the cefotaxime encapsulation efficiency of 95 ± 1%. An in vitro release of cefotaxime from the spheres in the media that simulate human biological fluids in peroral delivery conditions was found to be a pH-dependent process. The analysis of cefotaxime release kinetics by the Korsmeyer–Peppas model revealed a non-Fickian mechanism of its diffusion, which may be related to intermolecular interactions occurring between the antibiotic and chitosan. Conductometry, UV spectroscopy, and IR spectroscopy were used to study complexation of chitosan with cefotaxime in aqueous media with varied pH, characterize the composition of the complexes, and calculate their stability constants. The composition of the cefotaxime–chitosan complexes was found to correspond to the 1.0:4.0 and 1.0:2.0 molar ratios of the components at pH 2.0 and 5.6, respectively. Quantum chemical modeling was used to evaluate energy characteristics of chitosan–cefotaxime complexation considering the influence of a solvent.  相似文献   

7.
Doxorubicin complexation with the transition metal manganese (Mn(2+)) has been characterized, differentiating between the formation of a doxorubicin-metal complex and doxorubicin fibrous-bundle aggregates typically generated following ion gradient-based loading procedures that rely on liposome encapsulated citrate or sulfate salts. The physical and chemical characteristics of the encapsulated drug were assessed using cryo-electron microscopy, circular dichroism (CD) and absorbance spectrophotometric analysis. In addition, in vitro and in vivo drug loading and release characteristics of the liposomal formulations were investigated. Finally, the internal pH after drug loading was measured with the aim of linking formation of the Mn(2+) complex to the presence or absence of a transmembrane pH gradient. Doxorubicin was encapsulated into either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol (Chol) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/Chol liposomes, where the entrapped salts were citrate, MnSO(4) or MnCl(2). In response to a pH gradient or a Mn(2+) ion gradient, doxorubicin accumulated inside to achieve a drug-to-lipid ratio of approximately 0.2:1 (wt/wt). Absorbance and CD spectra of doxorubicin in the presence of Mn(2+) suggested that there are two distinct structures captured within the liposomes. In the absence of added ionophore A23187, drug loading is initiated on the basis of an established pH gradient; however, efficient drug uptake is not dependent on maintenance of the pH gradient. Drug release from DMPC/Chol is comparable regardless of whether doxorubicin is entrapped as a citrate-based aggregate or a Mn(2+) complex. However, in vivo drug release from DSPC/Chol liposomes indicate less than 5% or greater than 50% drug loss over a 24-h time course when the drug was encapsulated as an aggregate or a Mn(2+) complex, respectively. These studies define a method for entrapping drugs possessing coordination sites capable of complexing transition metals and suggest that drug release is dependent on lipid composition, internal pH, as well as the nature of the crystalline precipitate, which forms following encapsulation.  相似文献   

8.
Conclusion  An inclusion complex of rofecoxib and HPβ-CD was prepared successfully by the spray-drying method in a molar ratio of 1∶1. The inclusion complex was found to have improved in vitro drug release compared with the pure drug. The solubility profile of complexes of rofecoxib prepared using HPβ-CD as the complexing agent in a molar ratio of 1∶1 by the spray-drying method in pH 1.2 and pH 7.4 indicated that the acid solubility of rofecoxib was enhanced considerably by formation of an inclusion complex with HPβ-CD. The above results also clearly demonstrated a significant decrease in the gastric ulcerogenic activity of rofecoxib through complexation with cyclodextrins. Even though the physical mixture of rofecoxib with cyclodextrins reduced ulcer formation, it was the spray-dried complex formation approach that minimized gastric ulceration. These findings are extremely important from a commercial point of view as the prepared complex removes a major drawback for rofecoxib in therapy. Published: September 20, 2005  相似文献   

9.
The purpose of this study was to investigate whether hydrotalcite is able to intercalate diclofenac, a nonsteroidal anti-inflammatory drug, and release it in a controlled manner. Layered Mg−Al hydrotalcite in the chloride form was used as a host, and the intercalation compound was prepared by Cl/diclofenac anionic exchange. Drug release from the intercalation compound was performed in vitro in simulated intestinal fluid at pH 7.5 according to USP 24 and in a pH 7.0 solution designed to mimic the ionic conditions of the small intestine. Results from the intercalation process show that hydrotalcite is able to intercalate diclofenac with a simple procedure and with a good drug loading (55% wt/wt). The in vitro drug release was remarkably lower than that from the corresponding physical mixture at both pH 7.5 and pH 7.0. In the latter case, the release was not complete at 24 hours. The kinetic analysis shows the importance of the diffusion through the particle in controlling the drug release rate. The obtained results show that hydrotalcite may be used to prepare modified release formulations.  相似文献   

10.
The purpose of this study is to characterize the properties of Eudragit® FS-based granules prepared using melt extrusion process for colonic drug delivery. 5-Aminosalicylic acid (5-ASA), theophylline, and diclofenac sodium were used as the model compounds. Drug and polymer blends were melt-extruded into thin rods using a single screw extruder. Drugs were found to be dispersed as crystalline particles in the granules. A hammer mill was used to reduce the extrudate into 16–40 mesh granules, which were mixed with lactose and filled into hard gelatin capsules. Three-stage dissolution testing performed using USP paddle method was used to simulate drug release in gastrointestinal tract. In this study, melt extrusion has been demonstrated to be a suitable process to prepare granules for colonic delivery of 5-amino salicylic acid. At 30% drug loading, less than 25% 5-ASA was released from melt-extruded granules of 20–30 mesh in the first two stages (0.1 N hydrochloric acid solution and phosphate buffer pH 6.8) of the dissolution testing. All 5-ASA was released within 4 h when dissolution medium was switched to phosphate buffer pH 7.4. Drug loading, granule size, and microenvironment pH induced by the solubilized drug were identified as the key factors controlling drug release. Granules prepared with melt extrusion demonstrated lower porosity, smaller pore size, and higher physical strength than those prepared with conventional compression process. Eudragit® FS was found to be stable even when processed at 200°C.  相似文献   

11.
Doxorubicin complexation with the transition metal manganese (Mn2+) has been characterized, differentiating between the formation of a doxorubicin-metal complex and doxorubicin fibrous-bundle aggregates typically generated following ion gradient-based loading procedures that rely on liposome encapsulated citrate or sulfate salts. The physical and chemical characteristics of the encapsulated drug were assessed using cryo-electron microscopy, circular dichroism (CD) and absorbance spectrophotometric analysis. In addition, in vitro and in vivo drug loading and release characteristics of the liposomal formulations were investigated. Finally, the internal pH after drug loading was measured with the aim of linking formation of the Mn2+ complex to the presence or absence of a transmembrane pH gradient. Doxorubicin was encapsulated into either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol (Chol) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/Chol liposomes, where the entrapped salts were citrate, MnSO4 or MnCl2. In response to a pH gradient or a Mn2+ ion gradient, doxorubicin accumulated inside to achieve a drug-to-lipid ratio of approximately 0.2:1 (wt/wt). Absorbance and CD spectra of doxorubicin in the presence of Mn2+ suggested that there are two distinct structures captured within the liposomes. In the absence of added ionophore A23187, drug loading is initiated on the basis of an established pH gradient; however, efficient drug uptake is not dependent on maintenance of the pH gradient. Drug release from DMPC/Chol is comparable regardless of whether doxorubicin is entrapped as a citrate-based aggregate or a Mn2+ complex. However, in vivo drug release from DSPC/Chol liposomes indicate less than 5% or greater than 50% drug loss over a 24-h time course when the drug was encapsulated as an aggregate or a Mn2+ complex, respectively. These studies define a method for entrapping drugs possessing coordination sites capable of complexing transition metals and suggest that drug release is dependent on lipid composition, internal pH, as well as the nature of the crystalline precipitate, which forms following encapsulation.  相似文献   

12.
Kim CJ 《AAPS PharmSciTech》2005,6(3):E429-E436
The purpose of this research was to evaluate triple layer, donut-shaped tablets (TLDSTs) for extended release dosage forms. TLDSTs were prepared by layering 3 powders sequentially after pressing them with a punch. The core tablet consisted of enteric polymers, mainly hydroxypropyl methylcellulose acetate succinate, and the bottom and top layers were made of a water-insoluble polymer, ethyl cellulose. Drug release kinetics were dependent on the pH of the dissolution medium and the drug properties, such as solubility, salt forms of weak acid and weak base drugs, and drug loading. At a 10% drug loading level, all drugs, regardless of their type or solubility, yielded the same release profiles within an acceptable level of experimental error. As drug loading increased from 10% to 30%, the drug release rate of neutral drugs increased for all except sulfathiazole, which retained the same kinetics as at 10% loading. HCl salts of weak base drugs had much slower release rates than did those of neutral drugs (eg, theophylline) as drug loading increased. The release of labetalol HCl retarded as drug loading increased from 10% to 30%. On the other hand, Na salts of weak acid drugs had much higher release rates than did those of neutral drugs (eg, theophylline). Drug release kinetics were governed by the ionization/erosion process with slight drug diffusion, observing no perfect straight line. A mathematical expression for drug release kinetics (erosion-controlled system) of TLDSTs is presented. In summary, a TLDST is a good design to obtain zero-order or nearly zero-order release kinetics for a wide range of drug solubilities.  相似文献   

13.
The targeted or responsive systems are appealing therapeutic platforms for the development of next-generation precision medications. So, we design and prepare acid-controlled release complexes of podophyllotoxin (POD) and etoposide (VP-16) with pH-labile acyclic cucurbit[n]urils, and their characteristics and inclusion complexation behaviors were investigated via fluorescence spectroscopy, nuclear magnetic resonance and X-ray power diffraction. Cells incubated with complexes have been analyzed by high-content analysis (HCA), and cytotoxicity tests have been completed by MTT assay. The results showed that complexes with different binding constants can release the drug substance in the physiological pH environment of cancer cells, maintain good anticancer activity, and have low cytotoxicity. This provides a strategy about targeted and responsive systems of POD and VP-16 for clinical application.  相似文献   

14.
Self-assembled microtubules were used to entrap insulin for the preparation of new drug delivery devices. The interactions of insulin with the microtubules were probed by circular dichroism, zeta potential analysis, as well as FTIR spectroscopy. The morphologies of the insulin-loaded tubules were examined by AFM and TEM. We found that insulin loading was both pH- as well as concentration-dependent. The circular dichroism analysis indicated that, at pH range 6-7, the conformation change in the presence of the microtubules was minimal and hence would be the most appropriate conditions for insulin loading. The entrapment efficiency and release of insulin was found to be pH-dependent. Further, the controlled drug release studies indicated that, under acidic conditions, insulin release was extremely slow, and it is likely that the insulin is protected inside the microtubules. Thus, the microtubules may potentially protect the insulin from aggregation and release at lower pH (gastric pH) in ViVo. However, at pH 6.5 (closer to intestinal pH) a sustained release was observed. Such new materials may inhibit the aggregation of peptides under suitable conditions and potentially be used for drug delivery, in particular, for other peptide-based drugs.  相似文献   

15.
With the aim of developing a pH-sensitive controlled drug release system, a poly (L-lysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.  相似文献   

16.
The interactions and complexation process of the amphiphilic phenothiazine fluphenazine hydrochloride with human serum albumin in aqueous buffered solutions of pH 3.0 and 7.4 have been examined by zeta-potential, isothermal titration calorimetry (ITC), UV-vis spectroscopy, and dynamic light scattering (DLS) techniques with the aim of analyzing the effect of hydrophobic and electrostatic forces on the complexation process and the alteration of protein conformation upon binding. Thus, the energetics and stoichiometry of the binding process were derived from ITC data. The enthalpies of binding obtained are small and exothermic, so the Gibbs energies of binding are dominated by large increases in entropy, consistent with hydrophobic interactions at a acidic pH. However, at physiological pH, binding to the first class of binding sites is dominated by an enthalpic contribution due to the existence of electrostatic interactions and probably some hydrogen bonding. Binding isotherms were obtained from microcalorimetric data by using a theoretical model based on the Langmuir isotherm. zeta-Potential data showed a reversal in the sign of the protein charge at pH 7.4, as a consequence of the binding of the drug to the protein. Gibbs energies of drug binding per mole of drug were also derived from zeta-potential data. On the other hand, binding of the phenothiazine that causes a conformational transition on the protein structure was followed as a function of drug concentration using UV-vis spectroscopy, and the data were analyzed to obtain the Gibbs energy of the transition in water (deltaG(degree)w) and in a hydrophobic environment (deltaG(degree)hc). Finally, the population distribution of the different species in solution and the size of the complexes were analyzed through dynamic light scattering. The existence of an aggregation process of drug/protein complexes, as a consequence of the expanded structure of the protein induced by the drug and subsequent further binding, is in agreement with ITC data. In addition, detection of drug aggregates at concentrations below the drug critical micelle concentration was also detected by this technique.  相似文献   

17.
Sustained-release matrix tablets based on Eudragit RL and RS were manufactured by injection moulding. The influence of process temperature; matrix composition; drug load, plasticizer level; and salt form of metoprolol: tartrate (MPT), fumarate (MPF) and succinate (MPS) on ease of processing and drug release were evaluated. Formulations composed of 70/30% Eudragit RL/MPT showed the fastest drug release, substituting part of Eudragit RL by RS resulted in slower drug release, all following first-order release kinetics. Drug load only affected drug release of matrices composed of Eudragit RS: a higher MPT concentration yielded faster release rates. Adding triethyl citrate enhanced the processability, but was detrimental to long-term stability. The process temperature and plasticizer level had no effect on drug release, whereas metoprolol salt form significantly influenced release properties. The moulded tablets had a low porosity and a smooth surface morphology. A plasticizing effect of MPT, MPS and MPF on Eudragit RS and Eudragit RL was observed via DSC and DMA. Solubility parameter assessment, thermal analysis and X-ray diffraction demonstrated the formation of a solid solution immediately after production, in which H-bonds were formed between metoprolol and Eudragit as evidenced by near-infrared spectroscopy. However, high drug loadings of MPS and MPF showed a tendency to recrystallise during storage. The in vivo performance of injection-moulded tablets was strongly dependent upon drug loading.  相似文献   

18.
The purpose of this research was to investigate the potential use of anionick-carrageenan and nonionic hydroxypropyl-methylcellulose (HPMC, K4) to improve the matrix integrity of directly compressed chitosan tablets containing naproxen sodium, an anionic drug. The influence of buffer pH and drug:polymer ratio on the water uptake, matrix erosion, and drug release were studied. The rapid release of naproxen sodium was seen from matrices containing 100% chitosan due to loss in the matrix cohesiveness; whereas, it was relatively slow for matrices containing optimum concentration ofk-carrageenan. In-situ interaction between oppositely charged moieties resulted in the formation of polyelectrolyte complexes with stoichiometric charge ratios of unity. Fourier transform in frared (FTIR) spectroscopy and powder x-ray diffraction (PXRD) data confirmed the importance of ionic bonds in polyelectrolyte complexation. The ionic interactions between polymers were absent in matrices containing HPMC and the integrity of tablets was improved owing to the presence of viscous gel barrier. The reasons for retarded release of naproxen sodium from the chitosan matrices at different pH include poor aqueous solubility of drug, the formation of a rate-limiting polymer gel barrier along the periphery of matrices, the interaction of naproxen sodium with protonated amino, groups of chitosan, and the interaction of ionized amino groups of chitosan with ionized sulfate groups ofk-carrageenan. Published: June 15, 2007  相似文献   

19.
The purpose of this study is to develop novel colon-specific drug delivery systems with pH-sensitive swelling and drug release properties. Methacrylic-type polymeric prodrugs with different content levels of 5-amino salicylic acid (5-ASA) were synthesized by free radical copolymerization of metacrylic acid (MAA), polyethylene glycol monomethacrylate (PEGMA), and a methacrylic derivative of 5-ASA (methacryloyloxyethyl 5-amino salicylate [MOES]). The copolymers were characterized, and the drug content of the copolymers was determined. The effect of copolymer composition on the swelling behavior and hydrolytic degradation was studied in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.2). The swelling and hydrolytic behavior of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in SGF or an increase in gel swelling in SIF. Drug release studies showed that increasing content of MAA in the copolymer enhances the hydrolysis in SIF but has no effect in SGF. The results suggest that hydrogen-bonded complexes are formed between MAA and PEG pendant groups and that these pH-sensitive systems could be useful for preparation of a controlled-release formulation of 5-ASA.  相似文献   

20.
A textile polyester vascular graft was modified with cyclodextrins to obtain a new implant capable of releasing antibiotics (here ciprofloxacin, CFX) over prolonged time periods and thereby reducing the risk of post-operative infections. In this study, we compared samples modified with native and modified cyclodextrins, presenting different cavity sizes (β or γ cyclodextrins) and different substituent groups (hydroxypropyl and methyl). Drug release was measured in water, phosphate buffer pH 7.4 and blood plasma. The inclusion of CFX in the cyclodextrins cavities was observed in solution by two-dimensional (1)H NMR spectroscopy and confirmed by (1)F NMR measurements. Grafts modification with all cyclodextrins induced an increase of their sorption capacity towards CFX whose extent depended on the nature of the cyclodextrin: a 4-fold and 10-fold increase was observed in the cases of hydroxypropyl cyclodextrins and methylated β-cyclodextrin, respectively. Depending on the type of release medium and nature of CD, different CFX release kinetics were obtained. The discussion highlighted not only the role of the host guest complexation, but also that of the electrostatic interactions that occur between the anionic crosslinks of the cyclodextrins polymers, and CFX that presents a zwitterionic character. The microbiological assessment confirmed sustained CFX release in human plasma and demonstrated antibacterial efficiency of CD modified prostheses against Staphylococcus aureus and Escherichia coli for at least 24h (compared to 4h in the case of virgin grafts).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号