首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Human temporomandibular disorders due to disturbed occlusal mechanics are characterized by sensory, motor and autonomic symptoms, possibly related to muscle overwork and fatigue. Our previous study in rats with experimentally-induced malocclusion due to unilateral molar cusp amputation showed that the ipsilateral masseter muscles undergo morphological and biochemical changes consistent with muscle hypercontraction and ischemia. In the present study, the masseter muscle spindles of the same malocclusion-bearing rats were examined by electron microscopy. Sham-operated rats were used as controls. In the treated rats, clear-cut alterations of the muscle spindles were observed 26 days after surgery, when the extrafusal muscle showed the more severe damage. The fusal alterations affected predominantly capsular cells, intrafusal muscle fibers and sensory nerve endings. These results suggest that in the malocclusion-bearing rats, an abnormal reflex regulation of the motor activity of the masticatory muscles may take place. They also allow us to hypothesize that muscle spindle alterations might be involved in the pathogenesis of human temporomandibular disorders.  相似文献   

3.
Summary The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

4.
J Kucera  J M Walro 《Histochemistry》1990,93(6):567-580
The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

5.
The ultrastructure of rat masseter muscle was examined at 15 min, 1 and 6 h, and 1 and 2 days following a single injection of 2% lidocaine. Lesions developed within 15 min. The plasma membrane was disrupted and invaginated. The nuclei were pyknotic and the mitochondria appeared swollen. The myofibrils separated and became disoriented. By 1 and 6 h, these changes were severe. By 1 day, the macrophages appeared in damaged myofibers. The presence of a few presumptive myoblasts signaled the onset of regeneration. By 2 days, presumptive myoblasts formed within the basement membrane. The basal lamina proved most resistant to injury. Regeneration of masseter muscle following the damage produced by lidocaine appeared discontinuous in nature. The singly nucleated presumptive myoblasts seemed to arise within the lesions.  相似文献   

6.
Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy   总被引:22,自引:0,他引:22  
C Webster  L Silberstein  A P Hays  H M Blau 《Cell》1988,52(4):503-513
We show that Duchenne muscular dystrophy (DMD) selectively affects a subset of skeletal muscle fibers specialized for fast contraction. Muscle fiber types were characterized immunohistochemically with monoclonal antibodies that distinguish isoforms of fetal and adult-fast or adult-slow myosin heavy chain present in the same fiber. Fetal myosin expression increased with patient age and was not due to arrested development but rather to de novo synthesis, which served as a sensitive indicator of muscle regeneration. A subset of fast fibers were the first to degenerate (type IIb). Extensive fast fiber regeneration occurred before slow fibers were affected. These results suggest that the DMD gene product has a specific function in a subpopulation of muscle fibers specialized to respond to the highest frequency of neuronal stimulation with maximal rates of contraction.  相似文献   

7.
Nitric oxide (NO) mediates fundamental physiological actions on skeletal muscle. The neuronal NO synthase isoform (NOS1) was reported to be located exclusively in the sarcolemma. Its loss from the sarcolemma was associated with development of Duchenne muscular dystrophy (DMD). However, new studies evidence that all three NOS isoforms-NOS1, NOS2, and NOS3-are co-expressed in the sarcoplasm both in normal and in DMD skeletal muscles. To address this controversy, we assayed NOS expression in DMD myofibers in situ cytophotometrically and found NOS expression in DMD myofibers up-regulated. These results support the hypothesis that NO deficiency with consequent muscle degeneration in DMD results from NO scavenging by superoxides rather than from reduced NOS expression.  相似文献   

8.
The chronology of development of spindle neural elements was examined by electron microscopy in fetal and neonatal rats. The three types of intrafusal muscle fiber of spindles from the soleus muscle acquired sensory and motor innervation in the same sequence as they formed--bag2, bag1, and chain. Both the primary and secondary afferents contacted developing spindles before day 20 of gestation. Sensory endings were present on myoblasts, myotubes, and myofibers in all intrafusal bundles regardless of age. The basic features of the sensory innervation--first-order branching of the parent axon, separation of the primary and secondary sensory regions, and location of both primary and secondary endings beneath the basal lamina of the intrafusal fibers--were all established by the fourth postnatal day. Cross-terminals, sensory terminals shared by more than one intrafusal fiber, were more numerous at all developmental stages than in mature spindles. No afferents to immature spindles were supernumerary, and no sensory axons appeared to retract from terminations on intrafusal fibers. The earliest motor axons contacted spindles on the 20th day of gestation or shortly afterward. More motor axons supplied the immature spindles, and a greater number of axon terminals were visible at immature intrafusal motor endings than in adult spindles; hence, retraction of supernumerary motor axons accompanies maturation of the fusimotor system analogous to that observed during the maturation of the skeletomotor system. Motor endings were observed only on the relatively mature myofibers; intrafusal myoblasts and myotubes lacked motor innervation in all age groups. This independence of the early stages of intrafusal fiber assembly from motor innervation may reflect a special inherent myogenic potential of intrafusal myotubes or may stem from the innervation of spindles by sensory axons.  相似文献   

9.
10.
11.
The present study was designed to examine the effect of sympathetic tonic activity on parasympathetic vasodilation evoked by the trigeminal-mediated reflex in the masseter muscle in urethane-anesthetized rats. Sectioning of the superior cervical sympathetic trunk (CST) ipsilaterally increased the basal level of blood flow in the masseter muscle (MBF). Electrical stimulation of the peripheral cut end of the CST for 2 min using 2-ms pulses ipsilaterally decreased in a dependent manner the intensity (0.5-10 V) and frequency (0.1-5 Hz) of the MBF. The CST stimulation for 2 min at <0.5 Hz with 5 V using 2-ms pulses seems to be comparable with the spontaneous activity in the CST fibers innervating the masseter vasculature, because this stimulation restored the basal level of the MBF to the presectioned values. Parasympathetic vasodilation evoked by electrical stimulation of the central cut end of the lingual nerve in the masseter muscle was markedly reduced by CST stimulation for 2 min with 5 V using 2-ms pulses in a frequency-dependent manner (0.5-5 Hz). Intravenous administration of phentolamine significantly reduced the vasoconstriction induced by CST stimulation in a dose-dependent manner (0.1-1 mg/kg), but pretreatment with either phentolamine or propranolol failed to affect the sympathetic inhibition of the parasympathetic vasodilation. Our results suggest that 1) excess sympathetic activity inhibits parasympathetic vasodilation in the masseter muscle, and 2) alpha- and beta-adrenoceptors do not contribute to sympathetic inhibition of parasympathetic vasodilation, and thus some other types of receptors must be involved in this response.  相似文献   

12.
13.
Electrogenesis of embryonic chick skeletal muscle cells differentiated in monolayer cultures was investigated. Muscle fibers in vitro generate spike potentials similar to those of fibers in vivo. However, other responses, plateaux resembling those in heart muscle, are also elicited. These results suggest that a functional differentiation exists in cultured muscle fibers.  相似文献   

14.
15.
Focal extracellular recordings were made of postjunctional currents produced at synapses of the inferior rectus eye muscle fibers by the spontaneous release of quanta of transmitter. These consisted of miniature endplate currents, or MEPC, in phasic fibers and miniature postjunctional currents, or MPJC, in tonic fibers. Open time of ionic channels (chan) was also registered. In tonic fibers, MPJC lasted considerably longer than MEPC did in phasic fibers: rising time, decay time, and chan in the former measured respectively 2.5, 4–5, and 2.2 times higher than in the latter. Acetylcholinesterace (AChE) inhibition produced a much greater (4.4-fold extension of current decay in phasic than in tonic fibers, where a 1.8-fold increase was seen, thereby reducing the gap between the decay time of currents in these fibers to a difference of 1.6 times. The more protracted decay of MPJC in tonic fibers compared with MEPC in phasic fibers is determined by the lower functional activity of AChE as well as the higher value of chan. Duration of MEPC and magnitude of chan in the "slow" phasic fibers of rat skeletal muscles fell well below the same parameters measured in the tonic fibers of the ocular muscle.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 120–129, January–February, 1987.  相似文献   

16.
17.
Palmitate oxidation in rat skeletal muscle was investigated with a suspension of intact isolated cells. M. flexor digitorum brevis was dissociated by a 6 h collagenase treatment to yield single myofibers of which 76% were viable. The contributions of 14CO2 and 14C-labeled acid-soluble intermediates to total oxidation products from palmitate were evaluated. The myofiber suspension exhibited a higher total oxidation rate than the isolated whole muscle, due to improved transport of palmitate to the sarcolemma. Addition of cytoplasmic cofactors L-carnitine, CoASH and ATP did not increase the palmitate oxidation. 14CO2 amounted to about 37% of oxidation products. With [1(-14)C]- and [16(-14)C]palmitate, the oxidation rates were equal. These findings indicate that the cellular integrity was well preserved. The oxidation rates were sharply decreased in fibers with damaged sarcolemmas, and in intact fibers when rotenon and antimycin A were applied. The damaged fibers restored the production of acid-soluble intermediates in the presence of cofactors. The results indicate that suspended skeletal myofibers are an adequate in vitro system for measurements of metabolic activities in the resting muscle.  相似文献   

18.
Conversion of graded responsiveness of lobster muscle fibers to all-or-none activity by alkali-earth and tetraethylammonium (TEA) ions appears to be due to a combination of effects. The membrane is hyperpolarized, its resistance is increased, and its sensitivity to external K+ is diminished, all effects which indicate diminished K+ conductance. While the spikes are prolonged, the conductance is higher throughout the response than it is in the resting membrane. Repetitive activity becomes prominent. These effects indicate maintained high conductance for an ion which causes depolarization. This is normally Na+, since its presence in low concentrations potentiates the effects of Ba++, but the alkali-earth ions and TEA can also carry inward charge. Ba++, Sr++, and TEA appear to be more effective than is Ca++ in its normal role, which is probably to depress K+ conductance and Na inactivation. Thus, conversion of graded to all-or-none responsiveness appears to occur because of the relative increase of depolarizing inward ion flux and decrease of repolarizing outward flux.  相似文献   

19.
The musculus masseter, ensuring movements of the mandible, displace the osseous pieces at its fracture up/down in the lateral and medial sides. Morphometrical investigation of the musculi depressores++ mandibulae has been performed. As a whole 33 corpses (29-78 years of age) of normosthenic++ complexion have been studied. The measurements have been performed by means of a special compasses and a ruler with an approximation to 1 mm and 1 degree. The length of the digastric muscle belly is 55.3 +/- 1.1 mm. The length of the geniohyoid muscle is 44.5 +/- 0.9 mm. The distance between the centers, where the digastric muscle are fixed on the hypoglossal bone is 46.1 +/- 1.1 mm, and on the mandible--25 +/- 9 mm. The width of fixation of the musculus mylohyoideus on the mandible is 52.6 +/- 1.2 mm. The angles between the masseter muscles, the mandibular body and the occlusive plane have also been determined.  相似文献   

20.
In muscle fibers from the rat diaphragm, 85% of the resting membrane ion conductance is attributable to Cl-. At 37 degree C and pH 7.0, GCl averages 2.11 mmho/cm2 while residual conductance largely due to K+ averages 0.34 mmho/cm2. The resting GCl exhibits a biphasic temperature dependence with a Q10 of 1.6 between 6 degree C and 25 degree C and a Q10 of nearly 1 between 25 degree C and 40 degree C. Decreasing external pH reversibly reduced GCl; the apparent pK for groups mediating this decrease is 5.5. Increasing pH up to 10.0 had no effect on GCl. Anion conductance sequence and permeability sequence were both determined to be Cl-greater than Br-greater than or equal to I-greater than CH3SO4-. Lowering the pH below 5.5 reduced the magnitude of the measured conductance to all anions but did not alter the conductance sequence. The permeability sequence was likewise unchanged at low pH. Experiments with varying molar ratios of Cl- and I- indicated a marked interaction between these ions in their transmembrane movement. Similar but less striking interaction was seen between Cl- and Br-. Current-voltage relationships for GCl measured at early time-points in the presence of Rb+ were linear, but showed marked rectification with longer hyperpolarizing pulses (greater than 50ms) due to a slow time-and voltage-dependent change in membrane conductance to Cl-. This nonlinear behavior appeared to depend on the concentration of Cl- present but cannot be attributed to tubular ion accumulation. Tubular disruption with glycerol lowers apparent GCl but not GK, suggesting that the transverse tubule (T-tubule) system is permeable to Cl- in this species. Quantitative estimates indicate that up to 80% of GCl may be associated with the T tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号