首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
GADD45, MyD118, and CR6 (also termed GADD45alpha, beta, and gamma) comprise a family of genes that encode for related proteins playing important roles in negative growth control, including growth suppression. Data accumulated suggest that MyD118/GADD45/CR6 serve similar but not identical functions along different apoptotic and growth suppressive pathways. It is also apparent that individual members of the MyD118/GADD45/CR6 family are differentially induced by a variety of genetic and environmental stress agents. The MyD118, CR6, and GADD45 proteins were shown to predominantly localize within the cell nucleus. Recently, we have shown that both MyD118 and GADD45 interact with proliferating cell nuclear antigen (PCNA), a protein that plays a central role in DNA replication, DNA repair, and cell cycle progression, as well as with the universal cyclin-dependent kinase inhibitor p21. In this work we show that also CR6 interacts with PCNA and p21. Moreover, it is shown that CR6 interacts with PCNA via a domain that also mediates interaction of both GADD45 and MyD118 with PCNA. Importantly, evidence has been obtained that interaction of CR6 with PCNA impedes the function of this protein in negative growth control, similar to observations reported for MyD118 and GADD45.  相似文献   

4.
Cells respond to environmental stress with activation of c-Jun N-terminal kinase (JNK) and p38. Recent studies have implicated Gadd45 and two related proteins, MyD118/Gadd45beta and CR6/Gadd45gamma, as initiators of JNK/p38 signaling via their interaction with an upstream kinase MTK1. It was proposed that stress-induced expression of the Gadd45-related proteins leads to MTK1 activation and subsequent JNK/p38 activation. Using embryo fibroblasts from gadd45-null mice, we have addressed the requirement for Gadd45 in mediating JNK/p38 activation during acute stress. Comparison of JNK/p38 activities in response to methyl methanesulfonate, hydrogen peroxide, UVC irradiation, sorbitol, and anisomycin treatment of gadd45(+/+) and gadd45(-/-) fibroblasts revealed no deficiency in JNK/p38 activation in gadd45(-/-) fibroblasts. In addition, in wild type cells, JNK and p38 activation significantly preceded gadd45 induction with all stresses. Examination of myd118/gadd45beta and cr6/gadd45gamma expression in gadd45(+/+) and gadd45(-/-) fibroblasts revealed similar induction patterns in the two cell types, which, like gadd45 expression, was delayed relative to JNK/p38 activation. We conclude that gadd45 expression is not required for activation of JNK/p38 by environmental stresses, nor are stress-induced increases in myd118/gadd45beta and cr6/gadd45gamma expression necessary for kinase activation in response to such insults.  相似文献   

5.
6.
MyD118 and Gadd45 are related genes encoding for proteins that play important roles in negative growth control, including growth suppression and apoptosis. MyD118 and Gadd45 are related proteins that previously were shown to interact with proliferating cell nuclear antigen (PCNA), implicated in DNA replication, DNA repair, and cell cycle progression. To establish the role of MyD118 and Gadd45 interactions with PCNA, in this work we sought to identify the interacting domains and analyze the significance of this interaction in negative growth control. Using complementary in vivo and in vitro interaction assays the N-terminal (1-46) and middle (100-127) regions of PCNA were identified as harboring MyD118- and Gadd45 interacting domains, whereas PCNA interacting domains within MyD118 and Gadd45 were localized to the C termini of these proteins (amino acids 114-156 and 137-165, respectively). These findings provide first evidence that similar domains within MyD118 and Gadd45 mediate interactions with PCNA. Importantly, ectopic expression of MyD118 or Gadd45 N-terminal peptides, lacking the PCNA interacting domain, was found to suppress colony formation or induce apoptosis more efficiently than the full-length proteins. These findings suggest that interaction of MyD118 or Gadd45 with PCNA, in essence, serves to impede negative growth control.  相似文献   

7.
Oncostatin M (OSM) is a member of the IL-6 family cytokines that use gp130 as a common signal transducer and exhibits both growth stimulatory as well as growth inhibitory activity depending on the cells. To analyze the mechanism of OSM function, we isolated immediate early responsive genes upon OSM stimulation. Here we describe the novel OSM-inducible gene OIG37 that is related to MyD118 and GADD45. The MyD118 gene has been described as an immediate early gene induced by IL-6 in M1 monocytic cells, and GADD45 was identified as a gene induced by UV or gamma-ray irradiation. Both are considered to function in growth arrest and/or DNA repair. Although the expression of OIG37, MyD118, and GADD45 was rather ubiquitous, it was differentially regulated. As the gp130 mutant defective for activating the STAT3 pathway showed the reduced induction of OIG37 by cytokine stimulation and expression of dominant negative STAT3 inhibited the induction of OIG37 by OSM, STAT3 is involved in OIG37 induction by IL-6 family cytokines. To examine the function of OIG37, we expressed it in NIH3T3 and IL-3-dependent BaF3 cells and found that OIG37 suppressed cell growth without any evidence of apoptosis. Whereas both MyD118 and OIG37 suppressed cell growth in both cell lines, suppression by OIG37 was more efficient than by MyD118. Immunoprecipitation experiments indicated that OIG37 associates with p21, a cyclin-dependent kinase inhibitor, and proliferating cell nuclear antigen.  相似文献   

8.
9.
Smith GB  Mocarski ES 《Journal of virology》2005,79(23):14923-14932
Mammalian cells and viruses encode inhibitors of programmed cell death that localize to mitochondria and suppress apoptosis initiated by a wide variety of inducers. Mutagenesis was used to probe the role of a predicted alpha-helical region within the hydrophobic antiapoptotic domain (AAD) of cytomegalovirus vMIA, the UL37x1 gene product. This region was found to be essential for cell death suppression activity. A screen for proteins that interacted with the AAD of functional vMIA but that failed to interact with mutants identified growth arrest and DNA damage 45 (GADD45alpha), a cell cycle regulatory protein activated by genotoxic stress, as a candidate cellular binding partner. GADD45alpha interaction required the AAD alpha-helical character that also dictated GADD45alpha-mediated enhancement of death suppression. vMIA mutants that failed to interact with GADD45alpha were completely nonfunctional in cell death suppression, and any of the three GADD45 family members (GADD45alpha, GADD45beta/MyD118, or GADD45gamma/OIG37/CR6/GRP17) was able to cooperate with vMIA; however, none influenced cell death when introduced into cells alone. GADD45alpha was found to increase vMIA protein levels comparably to treatment with protease inhibitors MG132 and ALLN. Targeted short interfering RNA knockdown of all three GADD45 family members maximally reduced vMIA activity, and this reduction was abrogated by additional GADD45alpha. Interestingly, GADD45 family members were also able to bind and enhance cell death suppression by Bcl-xL, a member of the Bcl-2 family of cell death suppressors, suggesting a direct cooperative link between apoptosis and the proteins that regulate the DNA damage response.  相似文献   

10.
Gadd45a (Gadd45), Gadd45b (MyD118), and Gadd45g (CR6) constitute a family of evolutionarily conserved, small, acidic, nuclear proteins, which have been implicated in terminal differentiation, growth suppression, and apoptosis. How Gadd45 proteins function in negative growth control is not fully understood. Recent evidence has implicated Gadd45a in inhibition of cdc2/cyclinB1 kinase and in G2/M cell cycle arrest. Yet, whether Gadd45b and/or Gadd45g function as inhibitors of cdc2/cyclinB1 kinase and/or play a role in G2/M cell cycle arrest has not been fully established. In this work, we show that Gadd45b and Gadd45g specifically interact with the Cdk1/CyclinB1 complex, but not with other Cdk/Cyclin complexes, in vitro and in vivo. Data also has been obtained that Gadd45b and Gadd45g, as well as GADD45a, interact with both Cdk1 and cyclinB1, resulting in inhibition of the kinase activity of the Cdk1/cyclinB1 complex. Inhibition of Cdk1/cyclinB1 kinase activity by Gadd45b and Gadd45a was found to involve disruption of the complex, whereas Gadd45g did not disrupt the complex. Moreover, using RKO lung carcinoma cell lines, which express antisense Gadd45 RNA, data has been obtained, which indicates that all three Gadd45 proteins are likely to cooperate in activation of S and G2/M checkpoints following exposure of cells to UV irradiation.  相似文献   

11.
12.
Gadd45a, Gadd45b, and Gadd45g (Gadd45/MyD118/CR6) are genes that are rapidly induced by genotoxic stress and have been implicated in genotoxic stress-induced responses, notably in apoptosis. Recently, using myeloid-enriched bone marrow (BM) cells obtained from wild-type (WT), Gadd45a-deficient, and Gadd45b-deficient mice, we have shown that in hematopoietic cells Gadd45a and Gadd45b play a survival function to protect hematopoietic cells from DNA-damaging agents, including ultra violet (UV)-induced apoptosis. The present study was undertaken to decipher the molecular paths that mediate the survival functions of Gadd45a and Gadd45b against genotoxic stress induced by UV radiation. It is shown that in hematopoietic cells exposed to UV radiation Gaddd45a and Gadd45b cooperate to promote cell survival via two distinct signaling pathways involving activation of the GADD45a-p38-NF-kappaB-mediated survival pathway and GADD45b-mediated inhibition of the stress response MKK4-JNK pathway.  相似文献   

13.
Oligomerization of human Gadd45a protein   总被引:8,自引:0,他引:8  
Gadd45a is an 18-kDa acidic protein that is induced by genotoxic and certain other cellular stresses. The exact function of this protein is not known. However, there is evidence for its involvement in growth control, maintenance of genomic stability, DNA repair, cell cycle control, and apoptosis. Consistently, Gadd45a has previously been shown to interact in vitro and/or in vivo with a number of proteins playing central roles in these cellular processes: proliferating cell nuclear antigen, p21(Cip1/Waf1), Cdc2-CyclinB complex, MTK1, and histones. Adding to this complexity, we have found that Gadd45a self-associates in solution, both in vitro and when expressed in the cell. Moreover, Gadd45a can complex with the two other members of the Gadd45 family of stress-induced proteins, human Gadd45b (MyD118) and Gadd45g (CR6). Gel-exclusion chromatography, native gel electrophoretic analysis, enzyme-linked immunosorbent assay, and chemical cross-linking showed that recombinant Gadd45a forms dimeric, trimeric, and tetrameric species in vitro, the dimers being the predominant form. Deletion mutant and peptide scanning analyses suggest that Gadd45a has two self-association sites: within N-terminal amino acids 33-61 and within 40 C-terminal amino acids. Despite the low abundance of Gadd45a in the cell, oligomer-forming concentrations can probably be achieved in the foci-like nuclear structures formed by the protein upon overexpression. Evidence for a potential role of Gadd45a self-association in altering DNA accessibility on damaged nucleosomes is presented.  相似文献   

14.
15.
Gadd45 proteins are induced by hyperosmolality in renal inner medullary (IM) cells, but their role for cell adaptation to osmotic stress is not known. We show that a cell line derived from murine renal IM cells responds to moderate hyperosmotic stress (540 mosmol/kg) by activation of G(2)/M arrest without significant apoptosis. If the severity of hyperosmotic stress exceeds the tolerance limit of this cell line (620 mosmol/kg) apoptosis is strongly induced. Using transient overexpression of ectopic Gadd45 proteins and simultaneous analysis of transfected versus non-transfected cells by laser-scanning cytometry, we were able to measure the effects of Gadd45 super-induction during hyperosmolality on G(2)/M arrest and apoptosis. Our results demonstrate that induction of all three Gadd45 isoforms inhibits mitosis and promotes G(2)/M arrest during moderate hyperosmotic stress but not in isosmotic controls. Furthermore, all three Gadd45 proteins are also involved in control of apoptosis during severe hyperosmotic stress. Under these conditions Gadd45gamma induction strongly potentiates apoptosis. In contrast, Gadd45alpha/beta induction transiently increases caspase 3/7 and annexin V binding before 12 h but inhibits later stages of apoptosis during severe hyperosmolality. These results show that Gadd45 isoforms function in common but also in distinct pathways during hyperosmolality and that their increased abundance contributes to the low mitotic index and protection of genomic integrity in cells of the mammalian renal inner medulla.  相似文献   

16.
17.
Gao H  Jin S  Song Y  Fu M  Wang M  Liu Z  Wu M  Zhan Q 《The Journal of biological chemistry》2005,280(12):10988-10996
Gadd45a is an important player in cell cycle G2-M arrest in response to genotoxic stress. However, the underlying mechanism(s) by which Gadd45a exerts its role in the control of cell cycle progression remains to be further defined. Gadd45a interacts with Cdc2, dissociates the Cdc2-cyclin B1 complex, alters cyclin B1 nuclear localization, and thus inhibits the activity of Cdc2/cyclin B1 kinase. These observations indicate that Gadd45a nuclear translocation is closely associated with its role in cell cycle G2-M arrest. Gadd45a has been characterized as a nuclear protein, but it does not contain a classical nuclear localization signal, suggesting that Gadd45a nuclear translocation might be mediated through different nuclear import machinery. Here we show that Gadd45a associates directly with B23 (nucleophosmin), and the B23-interacting domain is mapped at the central region (61-100 amino acids) of the Gadd45a protein using a series of Myc tag-Gadd45a deletion mutants. Deletion of this central region disrupts Gadd45a association with B23 and abolishes Gadd45a nuclear translocation. Suppression of endogenous B23 through a short interfering RNA approach disrupts Gadd45a nuclear translocation and results in impaired Gadd45a-induced cell cycle G2-M arrest. These findings demonstrate a novel association of B23 and Gadd45a and implicate B23 as an important regulator in Gadd45a nuclear import.  相似文献   

18.
Cell cycle growth arrest is an important cellular response to genotoxic stress. Gadd45, a p53-regulated stress protein, plays an important role in the cell cycle G(2)-M checkpoint following exposure to certain types of DNA-damaging agents such as UV radiation and methylmethane sulfonate. Recent findings indicate that Gadd45 interacts with Cdc2 protein and inhibits Cdc2 kinase activity. In the present study, a series of Myc-tagged Gadd45 deletion mutants and a Gadd45 overlapping peptide library were used to define the Gadd45 domains that are involved in the interaction of Gadd45 with Cdc2. Both in vitro and in vivo studies indicate that the interaction of Gadd45 with Cdc2 involves a central region of the Gadd45 protein (amino acids 65-84). The Cdc2-binding domain of Gadd45 is also required for Gadd45 inhibition of Cdc2 kinase activity. Sequence analysis of the central Gadd45 region reveals no homology to inhibitory motifs of known cyclin-dependent kinase inhibitors, indicating that the Cdc2-binding and -inhibitory domains on Gadd45 are a novel motif. The peptide containing the Cdc2-binding domain (amino acids 65-84) disrupted the Cdc2-cyclin B1 protein complex, suggesting that dissociation of this complex results from a direct interaction between the Gadd45 and Cdc2 proteins. GADD45-induced cell cycle G(2)-M arrest was abolished when its Cdc2 binding motif was disrupted. Importantly, a short term survival assay demonstrated that GADD45-induced cell cycle G(2)-M arrest correlates with GADD45-mediated growth suppression. These findings indicate that the cell cycle G(2)-M growth arrest mediated by GADD45 is one of the major mechanisms by which GADD45 suppresses cell growth.  相似文献   

19.
Gadd45alpha inhibits the activation of p38 by the T cell alternative pathway involving phosphorylation of p38 Tyr(323). Given that T cell p38 may play a role in Th1 development, the response to Th-skewing Ags was analyzed in Gadd45alpha(-/-) mice. Despite constitutively increased p38 activity in Gadd45alpha(-/-) T cells, the Th1 immune response to Toxoplasma gondii Ag (STAg), was diminished. In contrast to T cells, dendritic cells (DC) lacked the alternative p38 activation pathway. Gadd45alpha(-/-) DCs responded to STAg with low levels of MAP kinase cascade-dependent p38 activation, IL-12 production, and CD40 expression. Wild-type T cells transferred into Gadd45alpha(-/-) recipients had a diminished Th1 response to STAg, whereas Gadd45alpha(-/-) T cells transferred into wild-type hosts behaved normally. Therefore, Gadd45alpha has tissue-specific and opposing functions on p38 activity, and Gadd45alpha-regulated p38 activation in DCs is a critical event in Th1 polarization in vivo.  相似文献   

20.
NF-kappaB/Rel factors control programmed cell death (PCD), and this control is crucial to oncogenesis, cancer chemoresistance, and antagonism of tumor necrosis factor (TNF) alpha-induced killing. With TNFalpha, NF-kappaB-mediated protection involves suppression of the c-Jun-N-terminal kinase (JNK) cascade, and we have identified Gadd45beta, a member of the Gadd45 family, as a pivotal effector of this activity of NF-kappaB. Inhibition of TNFalpha-induced JNK signaling by Gadd45beta depends on direct targeting of the JNK kinase, MKK7/JNKK2. The mechanism by which Gadd45beta blunts MKK7, however, is unknown. Here we show that Gadd45beta is a structured protein with a predicted four-stranded beta-sheet core, five alpha-helices, and two acidic loops. Association of Gadd45beta with MKK7 involves a network of interactions mediated by its putative helices alpha3 and alpha4 and loops 1 and 2. Whereas alpha3 appears to primarily mediate docking to MKK7, loop 1 and alpha4-loop 2 seemingly afford kinase inactivation by engaging the ATP-binding site and causing conformational changes that impede catalytic function. These data provide a basis for Gadd45beta-mediated blockade of MKK7, and ultimately, TNFalpha-induced PCD. They also have important implications for treatment of widespread diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号