首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of gel network structures during isothermal heating of whey protein aqueous dispersions was probed by mechanical spectroscopy. It was anticipated that the pathway of the sol-to-gel transition of whey protein dispersions is quite different from that of ordinary cross-linking polymers (e.g., percolation-type transition), since aqueous solutions of native whey proteins have been shown to be highly structured even before gelation, in our previous study. At 20 degrees C, aqueous dispersions of beta-lactoglobulin, the major whey protein, and those of whey protein isolate (WPI), a mixture of whey proteins, exhibited solid-like mechanical spectra, i.e., the predominant storage modulus G' over the loss modulus G", in a certain range of the frequency omega (1-100 rad/s), regardless of the presence or absence of added NaCl. The existence of the added salt was, however, a critical factor for determining transitions in mechanical spectra during gelation at 70 degrees C. beta-Lactoglobulin dispersions in 0.1 mol/dm(3) NaCl maintained the solid-like nature during the entire gelation process and, after passing through the gelation point, satisfied parallel power laws (G' approximately G" approximately omega(n)) that have been proposed for a critical gel (i.e., the gel at the gelation point) that possesses a self-similar or fractal network structure. In contrast, beta-lactoglobulin dispersions without added salt exhibited a transition from solid-like [G'(omega) > G"(omega)] to liquid-like [G'(omega) < G"(omega)] mechanical spectra before gelation, but no parallel power law behavior was recognized at the gelation point. During extended heating time (aging), beta-lactoglobulin gels with 0.1 mol/dm(3) NaCl showed deviations from the parallel power laws, while spectra of gels without added NaCl approached the parallel power laws, suggesting that post-gelation reactions also significantly affect gel network structures. A percolation-type sol-to-gel transition was found only for WPI dispersions without added salt.  相似文献   

2.
The aggregation and gelation properties of beta-lactoglobulin (BLG), a globular protein from milk, was studied in aqueous ethanol solutions at room temperature. The phase state diagrams as a function of pH and ethanol concentration showed that a gel structure appeared after a period ranging from 1 min to 1 week, depending on the physico-chemical conditions. The in-situ kinetics of aggregation were followed by several methods in order to obtain a better understanding of the building of aggregates by the addition of ethanol. It was shown that the aggregation kinetics highly depended upon the pH, the process being fastest at pH 7. Viscoelasticity and infrared measurements indicated that alcohol-induced gelation would proceed via a two-step mechanism: small aggregates loosely connected between them were first built up; a real network took place in a second step. The coarse and irregular structures formed in aqueous ethanol gels revealed by confocal laser scanning microscopy could be analysed in terms of a phase separation. This observation was supported by a syneresis phenomenon visible in the final gel state. BLG in water-ethanol solution would undergo either an inhibition of the demixing by gelation or a binary phase separation accompanied by an irreversible gelation transition.  相似文献   

3.
Enzyme-induced aggregation and gelation of proteins   总被引:2,自引:0,他引:2  
This paper provides a brief overview of the effects of protein hydrolysis on aggregation and gel forming properties of protein systems. Among the food globular proteins, whey proteins and soy proteins are the most extensively studied for their ability to form different textures upon proteolysis. Recent studies were focused on identifying aggregating peptides and on mechanisms of aggregation and gelation.  相似文献   

4.
Ikeda S  Nishinari K 《Biopolymers》2001,59(2):87-102
Macroscopic and molecular structural changes during heat-induced gelation of beta-lactoglobulin, bovine serum albumin, ovalbumin, and alpha-lactalbumin aqueous dispersions were probed by the mechanical and CD spectroscopy, respectively. Aqueous solutions of the native globular proteins, except for alpha-lactalbumin, exhibited solid-like mechanical spectra-namely, the predominant storage modulus G' over the loss modulus G" in the entire frequency range examined (0.1-100 rad/s), suggesting that these protein solutions were highly structured even before gelation, possibly due to strong repulsions among protein molecules. Such solid-like structures were susceptible to nonlinearly large shear but recovered almost immediately at rest. During gelation by isothermal heating, major changes in the secondary structure of the globular proteins completed within a few minutes, while values of the modulus continued to develop for hours with maintaining values of tandelta (= G"/G') less than unity. As a result, a conventional criterion for mechanically defining the gelation point, such as a crossover between G' and G", was inapplicable to these globular protein systems. beta-Lactoglobulin gels that had passed the gelation point satisfied power laws (G' approximately G" approximately omega(n)) believed to be valid only at the gelation point, suggesting that fractal gel networks, similar to those of critical gels (i.e., gels at the gelation point), were formed.  相似文献   

5.
6.
Immobilized β-galactosidase gel was prepared using poly(vinylpyrrolidone) (PVP) under β-ray irradiation. In contrast to the gelation of N-vinylpyrrolidone monomer–enzyme solution, the gelation of PVP-β-galactosidase solution (PVP content: 10%) was almost completely uneffected by the dose rate and amount of phosphate present. PVP-enzyme solution was gelled by irradiation with 3.0 Mrad. The expressed activity of the PVP-enzyme gel was about 30% of the initial activity and added activity was almost totally entrapped. No leakage of enzyme from these gels could be detected. Leakage was, however, detected in the case of the gelation of PVP-enzyme solution containing more than 1% of enzyme protein. When the general properties of the gel were compared with those of the native enzyme, the gel proved to be slightly inferior to the native enzyme with respect to optimum temperature, heat stability, pH activity, and pH stability. Continuous hydrolysis of lactose in acid whey could be carried out at 50°C using a column packed with the gel and sawdust and the degree of hydrolysis was found to be almost, constant for 12 days. The merits of using PVP in the immobilization of enzymes include the simplicity of the procedure and the fact that the PVP-enzyme gel can be used in the food industry without anxiety because of its high degree of compatibility with living organisms.  相似文献   

7.
The effect of basic peptides on the gelation of a pectin from the cell wall of tomato was examined through the determination of gel stiffness, and swelling behaviour of the gel in water. Poly-L-lysine, poly-L-arginine, and a synthetic peptide, designed to mimic a sequence of basic amino acids found in a plant cell wall extensin, act as crosslinking agents. Circular dichroism studies on the interaction of synthetic extensin peptides with sodium polygalacturonate demonstrated that a conformational change was induced as a result of their complexation. In addition to their effect as crosslinking agents, the polycationic peptides reduced the swelling of the pectin network in water.  相似文献   

8.
The aggregation and gelation properties of beta-lactoglobulin (BLG), a globular protein from milk, was studied in hydro-ethanolic solutions (50/50% (v/v)) at room temperature. The phase state diagrams as a function of pH and ethanol concentration showed that a gel structure appeared after a period ranging from 1 min to 1 week depending on the physico-chemical conditions. The aggregation kinetics, studied by infrared spectroscopy and dynamical rheological measurements, highly depended upon the pH; the process being the fastest at pH 7. Alcohol-induced aggregation of BLG was characterized by the formation of intermolecular hydrogen bonded beta-sheet structures. Small angle neutron scattering indicated that the aggregates structures in the final gels were similar at pH 7, 8 and 9. Through the data obtained at the molecular and macroscopic levels, it can be concluded that the kinetics of gelation were pH dependent while the spatial arrangements of the aggregates were similar in the final structures. The heterogeneous structures formed in hydro-ethanolic gels could be analysed in terms of a phase separation, the syneresis being the final visible state.  相似文献   

9.
The aim of this study was to introduce a simple, reproducible, and less expensive method for isolation of alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin from cow's milk while retaining their antigenicity. Whey (lactoserum) was obtained by isolating casein from defatted milk using hydrochloric acid. Globulins were then precipitated from whey by half-saturated ammonium sulfate and beta-lactoglobulin was purified further using Sephadex G-50 gel filtration. The proteins in the supernatant were also fractionated using diethylaminoethyl cellulose chromatography in which beta-lactoglobulin was separated from alpha-lactalbumin and bovine serum albumin. The latter two proteins that co-eluted in anion-exchange chromatography were then gently isolated from each other by Sephadex G-50 gel filtration. Pure beta-lactoglobulin was also obtained by anion-exchange chromatography of the ammonium sulfate-precipitated globulins. Using enzyme-linked immunosorbent assay (ELISA), Western blotting, and ELISA inhibition assay, antigenicity of the purified proteins was evaluated. Our results showed high purity and well-preserved antigenicity of alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin thus purified.  相似文献   

10.
Bovine beta-lactoglobulin was hydrolyzed with trypsin or chymotrypsin in the course of heat treatment at 55, 60 and 65 degrees C at neutral pH. At these temperatures beta-lactoglobulin undergoes significant but reversible structural changes. In the conditions used in the present study, beta-lactoglobulin was virtually insensitive to proteolysis by either enzyme at room temperature, but underwent extensive proteolysis when either protease was present during the heat treatment. High-temperature proteolysis occurs in a progressive manner. Mass spectrometry analysis of some large-sized breakdown intermediates formed in the early steps of hydrolysis indicated that both enzymes effectively hydrolyzed some regions of beta-lactoglobulin that were transiently exposed during the physical treatments and that were not accessible in the native protein. The immunochemical properties of the products of beta-lactoglobulin hydrolysis were assessed by using various beta-lactoglobulin-specific antibodies, and most epitopic sites were no longer present after attack of the partially unfolded protein by the two proteases.  相似文献   

11.
An enzymatic method for hydrolyzing bovine milk proteins was developed. Purified milk proteins (alpha-lactalbumin, beta-lactoglobulin, and beta-casein) were hydrolyzed in 0.1 M Hepes buffer (pH 7.5) containing pronase E, aminopeptidase M, and prolidase at 37 degrees C for 20 h. Free glutamine and other amino acids were derivatized with phenylisothiocyanate and separated using a C18 Pico-Tag column. Amino acids were eluted from the column with an aqueous sodium acetate-acetonitrile gradient with detection at 254 nm. Glutamine recoveries from hydrolyzed alpha-lactalbumin, beta-lactoglobulin, and beta-casein were 78 +/- 4, 98 +/- 3, and 101 +/- 3% of the theoretical values, respectively. The recoveries of most amino acids were comparable with those obtained using acid hydrolysis, except for the recoveries of proline and acidic amino acids. These peptide bonds appeared to be resistant to enzymatic hydrolysis and also to inhibit the hydrolysis of adjacent amino acids. Free glutamine was found to be very stable (97% recovery) under the enzymatic hydrolysis conditions.  相似文献   

12.
beta-Lactoglobulin isolated from horse colostrum is heterogeneous and contains two components: beta-lactoglobulin I and beta-lactoglobulin II. These two proteins are monomeric and show differences in their electrophoretic mobilities, chain lengths and primary structures. The complete amino-acid sequence of beta-lactoglobulin II was determined by automated Edman degradation of the intact protein and of the peptides derived from these by digestion with trypsin or chymotrypsin and by chemical cleavage with cyanogen bromide. Unlike other beta-lactoglobulins which contain 162 amino acids, horse beta-lactoglobulin II is unique in that it contains 166 amino acids. The additional four amino acids represent an insertion between positions 116 and 117 of other beta-lactoglobulins so far sequenced, including horse beta-lactoglobulin I. Sequence comparison of beta-lactoglobulins I and II from horse colostrum reveals 48 amino acid substitutions (30%). Such a diversity between members of the beta-lactoglobulin gene family has not been encountered before. Sequence comparison with bovine beta-lactoglobulin A shows 85 amino acid replacements accounting for 53% of the residues. The structural homology with human retinol-binding protein may reveal similar biological functions and clues to the origin of milk proteins.  相似文献   

13.
The proteinaceous material present in beta-lactoglobulin fibrils formed after heating (20 h at 85 degrees C) at pH 2 was identified during this study. Fibrils were separated from the nonaggregated material, and the fibrils were dissociated using 8 M guanidine chloride and 0.1 M 1,4-dithiothreitol (pH 8). Characterization of the different fractions was performed using thioflavin T fluorescence, high-performance size-exclusion chromatography, reversed-phase HPLC, and mass spectrometry (MALDI-TOF). Beta-lactoglobulin was found to be hydrolyzed into peptides with molecular masses between 2000 and 8000 Da, and the fibrils were composed of a part of these peptides and not intact beta-lactoglobulin. The majority of the peptides (both aggregated and nonaggregated) were a result from cleavage of the peptide bonds before or after aspartic acid residues. Explanations for the presence of certain peptide fragments in the fibrils are the hydrophobicity, low charge, charge distribution, and capacity to form beta-sheets.  相似文献   

14.
Oscillatory shear rheometry has been used to study the gelation of beta-lactoglobulin at ambient in 50% v/v trifluoroethanol (TFE)/pH 7 aqueous buffer and in 50% v/v ethanol (EtOH)/water at pH 2. In contrast to what was found on heating aqueous solutions at pH 2 (Part 2 of this series), a more expected "chemical gelation"-like profile was found with modulus components G' and G' ' crossing over as the gels formed and then with G' ' passing through a maximum. In addition, for the EtOH system, there was a significant modulus increase at long time, suggestive of a more complex two-step aggregation scheme. Modulus-concentration relationships were obtained for both systems by extrapolating cure data to infinite time. For the TFE gels, this data was accurately described by classical branching theory, although it could also be approximated by a constant power--law relationship. Only the latter described the modulus--concentration data for the gels in ethanol, but there were problems here of greater frequency dependence of the modulus values and much less certain extrapolation. Gel times for the TFE systems showed higher power laws in the concentration than could be explained by the branching theory in its simplest form being similar, in this respect, to the heat-set systems at pH 2. Such power laws were harder to establish for the EtOH gels as for these there was evidence of gel time divergence close to a critical concentration. Reduced G'/G'inf versus t/tgel data were difficult to interpret for the gels in ethanol, but for the TFE system they were consistent with previous results for the heat-set gels and approximated master curve superposition. The frequency and temperature dependences of the final gel moduli were also studied. In general, the networks induced by alcohols appeared more flexible than those obtained by heating.  相似文献   

15.
As a potential tool for proteomics and protein characterization, in-gel cysteine- and arginine-specific cleavage is demonstrated by means of trypsin or endoproteinase Lys-C for six model proteins (lysozyme, alpha-lactalbumin, beta-lactoglobulin, ribonuclease A, albumin, and transferrin), ranging in size from 14 kDa to 79 kDa. Chemical modifications of cysteine (aminoethylation with bromoethylamine or N-(iodoethyl)-trifluoroacetamide, and subsequent guanidination) and lysine (acetylation) prior to tryptic digestion releases peptides delineated by cysteine or arginine residues. Peptide products are analyzed by MALDI-TOF-MS, ESI-MS, and ESI- and MALDI-MS/MS (with a quadrupole time-of-flight instrument). Complications induced by acrylamide alkylations of cysteines were avoided by substituting lower pH bis-tris polyacrylamide gels for tris-glycine. Sequence coverages from 35 to 86% were obtained and amino acid compositions of generated peptides could be confirmed by comprehensive y- and b-ion series. Detailed information about, in particular, cysteine rich proteins after gel electrophoresis were obtained. The chemistries for modification and cleavage specificities at cysteine residues provide an alternative means to characterize and identify proteins separated by gel electrophoresis.  相似文献   

16.
The major aminopeptidase from human post-mortem brain (occipital cortex) was purified to homogeneity (as judged by polyacrylamide gel electrophoresis) by anion-exchange chromatography (two steps) and gel filtration (two steps). The molecular weight of the enzyme was estimated as 105,000 from gel filtration. Maximum activity was obtained in the presence of 0.5 mM Ca2+ and 1 mM 2-mercaptoethanol at pH 7.3. Enzyme activity was lost on freezing and thawing or on lyophilization. The enzyme was inhibited by metal-ion chelating agents, sulphydryl blocking agents, bestatin, and puromycin. A series of amino acyl-7-amido-4-methylcoumarins was hydrolysed by the enzyme, with the alanyl derivative being hydrolysed most rapidly (Km 170 microM). Specificity studies with a series of alanine dipeptides suggested that a hydrophobic second residue favoured hydrolysis. Several naturally occurring neuropeptides, including Leu5-enkephalin (Km 180 microM), cholecystokinin octapeptide, and Arg8-vasopressin, were hydrolysed by the aminopeptidase. In a series of opioid peptides, increasing chain length led to decreased susceptibility to hydrolysis. Sulphation of the Tyr1 residue of Leu5-enkephalin and the Tyr2 residue of cholecystokinin octapeptide made the peptides more resistant to hydrolysis.  相似文献   

17.
beta-Lactoglobulins from pooled milk (Sus scrofa domestica) are isolated and characterized. The complete primary structure of the major beta-lactoglobulin component I is presented. The amino-acid sequence was elucidated by automated Edman degradation of tryptic peptides and cyanogen bromide cleavage products in a liquid phase sequencer. The tryptic and cyanogen bromide peptides were separated by reverse-phase (RP-2) or size exclusion (TSK 2000 SW) high performance liquid chromatography. Pig beta-lactoglobulin is composed of only 159 amino acids in contrast to other beta-lactoglobulins which contain 162 or 166 amino acids. Sequence alignment with previously sequenced beta-lactoglobulins was obtained by introducing two gaps at positions 115 and 151-152. Thus bovine beta-lactoglobulin A reveals 62 amino-acid substitutions. The phylogenetic distance from horse beta-lactoglobulin I and II is indicated by 49.4% and 62% amino-acid exchanges, respectively. Pig beta-lactoglobulin is a mixture of two chains with Gln or Thr at position 119. The free thiol group is localized at position 59. The structural and functional aspects of beta-lactoglobulins and its role in vitamin A (retinol) transport are discussed.  相似文献   

18.
To get more insight into the mechanisms of cold gelation of beta-lactoglobulin (beta-lg), macroscopic and molecular structural changes during Fe(2+)-induced gelation of beta-lg were investigated using Fourier transform-infrared (FTIR) spectroscopy and rheological methods. The FTIR spectroscopy results show that, upon the preheating treatment (first step of gel process), native globular proteins are denatured and aggregated molecules are found in solution. The spectra are similar to those of gels obtained in the second step of the process upon incorporation of Fe, which suggests that aggregated molecules formed during the preheating treatment constitute the structural basis of the aggregation. However, the rheological data show that the aggregation is achieved via two molecular mechanisms, both of which are modulated by the iron concentration. At 30 mM of iron, gel formation is essentially controlled by van der Waals interactions, while at 10 mM of iron, hydrophobic interactions predominate. At the two concentrations, disulfide bonds contribute to gel consolidation, the effect being more pronounced at 10 mM of iron. These mechanisms lead to the formation of gels of different microstructures. At the highest iron concentration, a strong and rapid decrease in the repulsion forces is produced, resulting in random aggregation. At the lowest iron concentration, the iron diminishes the superficial charge of both molecules and aggregated molecules, facilitating the interaction among hydrophobic regions and leading to the growth of the aggregation in the preferential direction and to filamentous gel formation. This study provides a comprehensive view of the different modes of gelation.  相似文献   

19.
Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) has been used to compare the structure of beta-lactoglobulin, the major component of whey proteins, in solution and in its functional gel state. To induce variation in the conformation of beta-lactoglobulin under a set of gelling conditions, the effect of heating temperature, pH, and high pressure homogenization on the conformation sensitive amide I band in the infrared spectra of both solutions and gels has been investigated. The results showed that gelification process has a pronounced effect upon beta-lactoglobulin secondary structure, leading to the formation of intermolecular hydrogen-bonding beta-sheet structure as evidenced by the appearance of a strong band at 1614 cm(-1) at the expense of other regular structures. These results confirm that this structure may be essential for the formation of a gel network as it was previously shown for other globular proteins. However, this study reveals, for the first time, that there is a close relationship between conformation of beta-lactoglobulin in solution and its capacity to form a gel. Indeed, it is shown that conditions which promote predominance of intermolecular beta-sheet in solution such as pH 4, prevent the formation of gel in conditions used by increasing thermal stability of beta-lactoglobulin. On the basis of these findings, it is suggested that by controlling the extent of intermolecular beta-structure of the protein in solution, it is possible to modify the ability of protein to form a gel and as a consequence to control the properties of gels.  相似文献   

20.
Hydrolysate of extruded corn gluten with higher solubility and antioxidative property was prepared. Extrusion and starch removal of corn gluten were applied as pretreatment before enzymatic hydrolysis by Alcalase. The amylase hydrolysis of starch at 70°C for 3 h resulted in the removal of the starch from the extruded corn gluten. The best hydrolysis results can be obtained by conducting the hydrolysis at 60°C with water addition 20 g/g protein, enzyme addition 0.048 Ansen units/g protein, pH 8.5, and 120 min. Degree of hydrolysis of extruded and nonextruded corn gluten reached 39.54 and 31.16%, respectively, under the optimal condition. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the optimal hydrolysate revealed that proteolysis of extruded corn gluten was more extensive than proteolysis of its counterpart which was not subjected to extrusion. The molecular weight of the peptides in the optimal hydrolysate was mainly over 3,710–660 Da as determined by gel filtration chromatography. The hydrolysates displayed good solubility and antioxidative activity. The separation profile of the hydrolysate on an ion exchange chromatography of Q-Sepharose Fast Flow showed that many kinds of peptides had antioxidative effect. A new peptide with antioxidative activity was purified, and its amino acid sequence was Phe-Pro-Leu-Glu-Met-Met-Pro-Phe, which was identified by Q-TOF2 mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号