首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To describe the effects of chronological age and biological age (pubertal development) on serum lipid and lipoprotein levels, body mass index (BMI) and waist circumference in Spanish adolescents. METHODS: A representative Spanish sample of 526 adolescents (254 males and 272 females), were studied. Total cholesterol (TC), high density lipoprotein cholesterol (HDLc), triglycerides, apolipoprotein A1 and B, and lipoprotein(a) were measured, and low density lipoprotein cholesterol (LDLc) was calculated. Additional measurements included BMI and waist circumference. Adolescents were classified according to chronological age, and pubertal development (also age of menarche in females). RESULTS: In males, serum TC levels were lower at late puberty in comparison with early puberty, and serum LDLc levels were lower at late puberty in comparison with mid and early puberty. Serum HDLc levels were lower at mid puberty in comparison with early and late puberty. Serum TC and LDLc levels were not different when analyzed according to chronological age. In females, HDLc levels were lower at late puberty in comparison with early and mid puberty, but no differences were found when HDLc and the other studied lipid and lipoprotein variables were analyzed according to chronological age, or age of menarche. All the observed differences persisted after adjusting for BMI and waist circumference. In female adolescents, both BMI and waist circumference were higher at late puberty in comparison with early and mid puberty, while in males, BMI and waist circumference were different when analyzed according to chronological age. CONCLUSION: The results suggest that the assessment of pubertal development may provide additional valuable information when interpreting lipid profile and body fat in adolescents.  相似文献   

2.
Niacin (nicotinic acid) has been used for decades as a lipid-lowering drug. The clinical use of niacin to treat dyslipidemic conditions is limited by its side effects. Niacin, along with fibrates, are the only approved drugs which elevate high density lipoprotein cholesterol (HDLc) along with its effects on low density lipoprotein cholesterol (LDLc) and triglycerides. Whether niacin has a beneficial role in lowering cardiovascular risk on the background of well-controlled LDLc has not been established. In fact, it remains unclear whether niacin, either in the setting of well-controlled LDLc or in combination with other lipid-lowering agents, confers any therapeutic benefit and if so, by which mechanism. The results of recent trials reject the hypothesis that simply raising HDLc is cardioprotective. However, in the case of the clinical trials, structural limitations of trial design complicate their interpretation. This is also true of the most recent Heart Protection Study 2-Treatment of HDLc to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial in which niacin is combined with an antagonist of the D prostanoid (DP) receptor. Human genetic studies have also questioned the relationship between cardiovascular benefit and HDLc. It remains to be determined whether niacin may have clinical utility in particular subgroups, such as statin intolerant patients with hypercholesterolemia or those who cannot achieve a sufficient reduction in LDLc. It also is unclear whether a potentially beneficial effect of niacin is confounded by DP antagonism in HPS2-THRIVE.  相似文献   

3.
喂饲高脂高胆固醇饮食是诱发实验性动脉粥样硬化(简称AS)的基本方法。在诱发AS过程中,血清脂质的改变不但有种属差异,也存在个体反应性的差异。猴是用于AS研究最理想的实验动物。喂以高胆固醇饮食后,有些猴血清胆固醇上升速度明显高于一般同种猴,称高反应猴(High-responding rhesus monkey);另一些猴的血清胆固醇上升十分缓慢,低于同种猴的一般反应速度,称低反应猴(Low-responding rhesusmonkey)。关于高反应猴(简称HI)及低反应猴(简称LO)在诱发AS过程中血清胆固醇反应的差别,国外已有报道。(Baker et al.,1981;Bhattacharyya et al.,1977;  相似文献   

4.
Yi LT  Li JM  Li YC  Pan Y  Xu Q  Kong LD 《Life sciences》2008,82(13-14):741-751
Apigenin is one type of bioflavonoid widely found in citrus fruits, which possesses a variety of pharmacological actions on the central nervous system. A previous study showed that acute intraperitoneal administration of apigenin had antidepressant-like effects in the forced swimming test (FST) in ddY mice. To better understand its pharmacological activity, we investigated the behavioral effects of chronic oral apigenin treatment in the FST in male ICR mice and male Wistar rats exposed to chronic mild stress (CMS). The effects of apigenin on central monoaminergic neurotransmitter systems, the hypothalamic-pituitary-adrenal (HPA) axis and platelet adenylyl cyclase activity were simultaneously examined in the CMS rats. Apigenin reduced immobility time in the mouse FST and reversed CMS-induced decrease in sucrose intake of rats. Apigenin also attenuated CMS-induced alterations in serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA) levels and 5-HIAA/5-HT ratio in distinct rat brain regions. Moreover, apigenin reversed CMS-induced elevation in serum corticosterone concentrations and reduction in platelet adenylyl cyclase activity in rats. These results suggest that the antidepressant-like actions of oral apigenin treatment could be related to a combination of multiple biochemical effects, and might help to elucidate its mechanisms of action that are involved in normalization of stress-induced changes in brain monoamine levels, the HPA axis, and the platelet adenylyl cyclase activity.  相似文献   

5.
Y. Chen  H.-D. Wang  X. Xia  H.-F. Kung  Y. Pan  L.-D. Kong   《Phytomedicine》2007,14(7-8):523-529
Depression is related to alterations of the monoamine oxidase (MAO), hypothalamic-pituitary-adrenal (HPA) axis, and oxidative systems, and some antidepressants achieve their therapeutic effects through alteration of following biochemical markers of depression: MAO-A and MAO-B activities, cortisol levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. The seeds of Psoralea corylifolia, otherwise known as Buguzhi, have long been used for treatments of various symptoms associated with aging in China. Furocoumarins are the most widespread secondary metabolites in this species. The present study was designed to evaluate the potential antidepressant-like activity of total furocoumarins of P. corylifolia (TFPC) in the chronic mild stress (CMS) model of depression. Mice subjected to CMS exhibited a reduction in sucrose intake. Conversely, brain MAO-A and MAO-B activities, plasma cortisol levels, and liver SOD activity and MDA levels were increased following CMS exposures. The time-course for reversal of CMS-induced deficits in sucrose consumption by TFPC was dose-dependent. Thus, the statistically significant effect of the higher dose of TFPC (50 mg/kg body wt.) was observed after 3 days of treatment, while 6 days of treatment were required in the group receiving a lower dose (30 mg/kg body wt.) of TFPC. TFPC reversed these biochemical changes. These results suggest that TFPC may possess potent and rapid antidepressant properties that are mediated via MAO, the HPA axis and oxidative systems and these antidepressant actions could make TFPC a potentially valuable drug for the treatment of depression in the elderly.  相似文献   

6.
《PloS one》2016,11(3)

Background

Several studies have shown associations between blood lipid levels and the risk of atrial fibrillation (AF). To test the potential effect of blood lipids with AF risk, we assessed whether previously developed lipid gene scores, used as instrumental variables, are associated with the incidence of AF in 7 large cohorts.

Methods

We analyzed 64,901 individuals of European ancestry without previous AF at baseline and with lipid gene scores. Lipid-specific gene scores, based on loci significantly associated with lipid levels, were calculated. Additionally, non-pleiotropic gene scores for high-density lipoprotein cholesterol (HDLc) and low-density lipoprotein cholesterol (LDLc) were calculated using SNPs that were only associated with the specific lipid fraction. Cox models were used to estimate the hazard ratio (HR) and 95% confidence intervals (CI) of AF per 1-standard deviation (SD) increase of each lipid gene score.

Results

During a mean follow-up of 12.0 years, 5434 (8.4%) incident AF cases were identified. After meta-analysis, the HDLc, LDLc, total cholesterol, and triglyceride gene scores were not associated with incidence of AF. Multivariable-adjusted HR (95% CI) were 1.01 (0.98–1.03); 0.98 (0.96–1.01); 0.98 (0.95–1.02); 0.99 (0.97–1.02), respectively. Similarly, non-pleiotropic HDLc and LDLc gene scores showed no association with incident AF: HR (95% CI) = 1.00 (0.97–1.03); 1.01 (0.99–1.04).

Conclusions

In this large cohort study of individuals of European ancestry, gene scores for lipid fractions were not associated with incident AF.  相似文献   

7.
Fluoxetine (Prozac) is a serotonin reuptake inhibitor. It increases extracellular levels of serotonin and is used in relieving the depressive symptoms of cancer patients. It has been reported that the drug may enhance the growth of certain cancer cells. This study investigates whether fluoxetine enhances the growth of a human colon cancer cell line (COLO320 DM) and if it affects the extracellular levels of serotonin or its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) and other monoamines and metabolites at two cell densities. The extracellular levels of serotonin, 5-HIAA and other monoamines and metabolites were measured simultaneously by high performance liquid chromatography from cell-culture media after incubation of cells both with and without fluoxetine for 3 days. The viability of COLO320 DM cells was evaluated using 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). At low cell densities (1.25x10(5) cells ml-1), fluoxetine at 1-10 microM significantly increased the extracellular levels of serotonin (p<0.005), 5-HIAA (p<0.005), and 3-methoxy-4-hydroxyphenylglycol (MHPG; p<0.001) as compared to the controls. Fluoxetine at 10-100 microM significantly inhibited the growth of COLO320 DM (p<0.005). At high cell densities (2x10(6) cells ml-1), fluoxetine at 1-10 microM significantly increased the extracellular levels of MHPG (p<0.01), and at 10 microM it significantly increased the extracellular levels of 5-HIAA (p<0.05). Fluoxetine at 100 microM significantly inhibited the growth of the cells (p<0.0001). These results suggest that fluoxetine at 1 microM of effective concentration may increase the extracellular levels MHPG, in addition to serotonin and 5-HIAA levels, yet not inhibit the growth of COLO320 DM.  相似文献   

8.
The effect of doxorubicin (DXR) on the levels of heart, liver and plasma lipids and plasma lipoproteins were studied in rats. Rats were treated with DXR (2.5 mg/kg body weight weekly for 8 weeks, iv) with or without alpha-tocopherol (alpha-TPL) (400 mg/kg body wt daily for 60 days) co-administration. DXR treated rats showed increase in plasma total cholesterol, triglycerides and phospholipids. The activities of lecithin cholesterol-acyl transferase and hepatic and extrahepatic lipoprotein lipase were lowered significantly with concomitant increase in liver and heart lipid peroxide levels in DXR treatment. HDL cholesterol level was found to be decreased significantly in DXR treated rats as a result of which there was an increase of LDLc/HDLc ratio. alpha-TPL coadministration brought back the enzyme activity to near normal and reduced the level of lipid peroxides. The lipid changes were minimum in rats treated with both alpha-TPL and DXR. This study suggests that the toxicity of DXR is reflected in lipids and lipoprotein profile.  相似文献   

9.
J F Reinhard  R J Wurtman 《Life sciences》1977,21(12):1741-1746
Our findings in experiments using reserpine, an amine releaser, and fluoxetine, a serotonin uptake blocker, indicate that the reuptake of serotonin from brain synapses precedes its transformation to 5-hydroxyindoleacetic acid (5-HIAA). Male rats were injected with reserpine or fluoxetine alone, or with fluoxetine one hour before reserpine; control animals received diluents. Reserpine lowered brain serotonin and raised brain 5-HIAA levels. Fluoxetine alone did not change serotonin levels but lowered 5-HIAA. Fluoxetine completely antagonized the reserpine-induced increase in 5-HIAA, and significantly enhanced its depletion of serotonin. In order to determine whether the ability of fluoxetine to block the rise in 5-HIAA after reserpine resulted from its effect on serotonin reuptake or from suppression of impulse flow along serotoninergic neurons, we also examined the effects of the drugs on serotonin metabolism in distal portions of acutely transected neurons (which, presumably, were no longer able to conduct impulses). No differences were noted between the responses of intact and lesioned serotoninergic neurons, indicating that fluoxetine's blockade of the rise in brain 5-HIAA results from its effect on serotonin reuptake.  相似文献   

10.
Recent human and animal studies indicate that oxidative and nitrosative stress may play a role in the aetiology and pathogenesis of depression. This study investigates the effect of chronic administration of the serotonin-norepinephrine reuptake inhibitor, venlafaxine, on the expression and methylation status of SOD1, SOD2, GPx1, GPx4, CAT, NOS1 and NOS2 in the brain and blood of rats exposed to a chronic mild stress (CMS) model of depression. Separate groups of animals were exposed to CMS for 2 or 7 weeks; the second group received saline or venlafaxine (10 mg/kg/d, IP) for 5 weeks. After completion of both stress conditions and drug administration, the mRNA and protein expression of selected genes and the methylation status of their promoters were measured in peripheral mononuclear blood cells (PBMCs) and in brain structures (hippocampus, amygdala, hypothalamus, midbrain, cortex, basal ganglia) with the use of TaqMan Gene Expression Assay, Western blot and methylation-sensitive high-resolution melting techniques. CMS caused a decrease in sucrose consumption, and this effect was normalized by fluoxetine. In PBMCs, SOD1, SOD2 and NOS2 mRNA expression changed only after venlafaxine administration. In brain, CAT, Gpx1, Gpx4 and NOS1 gene expression changed following CMS or venlafaxine exposure, most prominently in the hippocampus, midbrain and basal ganglia. CMS increased the methylation of the Gpx1 promoter in PBMCs, the second Gpx4 promoter in midbrain and basal ganglia, and SOD1 and SOD2 in hippocampus. The CMS animals treated with venlafaxine displayed a significantly higher CAT level in midbrain and cerebral cortex. CMS caused an elevation of Gpx4 in the hippocampus, which was lowered in cerebral cortex by venlafaxine. The results indicate that CMS and venlafaxine administration affect the methylation of promoters of genes involved in oxidative and nitrosative stress. They also indicate that peripheral and central tissue differ in their response to stress or antidepressant treatments. It is possible that that apart from DNA methylation, a crucial role of expression level of genes may be played by other forms of epigenetic regulation, such as histone modification or microRNA interference. These findings provide strong evidence for thesis that analysis of the level of mRNA and protein expression as well as the status of promoter methylation can help in understanding the pathomechanisms of mental diseases, including depression, and the mechanisms of action of drugs effective in their therapy.  相似文献   

11.
In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats.  相似文献   

12.
Obesity is associated with a 3-or-more-fold increase in the risk of fatal and nonfatal myocardial infarction (1,2,3,4,5,6). The American Heart Association has reclassified obesity as a major, modifiable risk factor for coronary heart disease (7). The increased prevalence of premature coronary heart disease in obesity is attributed to multiple factors (8,9,10). A principal contributor to this serious morbidity is the alterations in plasma lipid and lipoprotein levels. The dyslipidemia of obesity is commonly manifested as high plasma triglyceride levels, low high-density lipoprotein cholesterol (HDLc), and normal low-density lipoprotein cholesterol (LDLc) with preponderance of small dense LDL particles (7,8,9,10). However, there is a considerable heterogeneity of plasma lipid profile in overweight and obese people. The precise cause of this heterogeneity is not entirely clear but has been partly attributed to the degree of visceral adiposity and insulin resistance. The emergence of glucose intolerance or a genetic predisposition to familial combined hyperlipidemia will further modify the plasma lipid phenotype in obese people (11,12,13,14,15).  相似文献   

13.
Depressive disorders are devastating metal illness that can lead to deterioration in the social and occupational functioning of affected individuals. The etiology and pathophysiology of depression remain unknown. Present study was performed to better understand the underlying causes of depression. An experimental animal depression was induced in male BALB/c mice subjected to a chronic mild stress (CMS) procedure involving different stressor for consecutive 4 weeks. A cDNA microarray was employed to study the effects of CMS on the gene expression in cerebral cortex and hippocampus. 4-week CMS caused a significant reduction of 2% sucrose consumption. Morris water maze procedure showed impairment in cognitive function in stressed mice. Results of microarray showed that there were 102 and 60 genes were markedly affected by CMS treatment in cerebral cortex and hippocampus regions, respectively, including DNA damage/repair-related enzymes, anti-oxidant enzyme, and cyclin and cyclin-dependent kinase (CDK). These findings suggest that multiple biochemical effects play an important role the etiology of depression.  相似文献   

14.
Chronic psychoemotional stress of social defeats produces development of experimental anxious depression in male mice similar to this disorder in humans. 5-HT and 5-HIAA levels, TPH and MAO A activities, 5-HT1A-receptors in different brain areas were investigated at different stages of development of experimental disorder. It has been shown that initial stage (3 days of social stress) is accompanied by increase of 5-HT level in some brain areas. Decreased 5-HIAA levels in the hippocampus, amygdala and nucleus accumbens were discovered at the stage of forming depression (10 days of social stress). Pharmacological desensitisation and decreased number of 5-HT1A-receptors were shown in frontal cortex and amygdala. At the stage of pronounced depression (20 days of stress), there were no differences in 5-HT and 5-HIAA levels in all brain areas (excluding hypothalamus) of depressive animals. However increased number of 5-HT1A-receptors and decreased affinity in amygdala and decreased TPH and MAOA activities in hippocampus were found in depressive mice. Hypofunction of serotonergic system is suggested at the stage of pronounced depression state in animals. Similar processes had place in brain dopaminergic systems. It is concluded that dynamic changes of brain monoaminergic activities accompany the development of anxious depression in animals. Various parameters of monoaminergic systems are differently changed depending on brain area, mediator system and stage of disorder.  相似文献   

15.
There is evidence of derangement of oxidant and antioxidant defense systems in depression. The present study examined the effects of fluoxetine and citalopram, standard selective serotonin re-uptake inhibitors, on lipid peroxidation, superoxide dismutase (SOD) activity and ascorbic acid concentrations. For this, a prospective open-labeled, randomized design was utilized. Patients with major depression (n = 62) were compared with age- and sex-matched healthy volunteers (n = 40). There was a significant increase in serum SOD, serum MDA and decrease in plasma ascorbic acid levels in patients of major depression as compared to control subjects. The trend reversed significantly after treatment with fluoxetine and citalopram. Results indicate a greater reduction in oxidative stress with citalopram than fluoxetine. The Hamilton Rating Scale for Depression (HRSD) score also improved with fluoxetine and citalopram treatment. These findings indicate that major depression is associated with increased levels of serum SOD, serum MDA and decreased levels of plasma ascorbic acid. Treatment with fluoxetine and citalopram reversed these biochemical parameters. This study can be used as a predictor of drug response by fluoxetine and citalopram in major depression.  相似文献   

16.
摘要 目的:探讨电针联合归脾汤对产后抑郁大鼠抑郁症状的影响及机制。方法:选择雌性SD大鼠36只,将36只大鼠随机分为正常组、模型组、盐酸氟西汀组、归脾汤组、电针组、归脾汤联合电针组,每组6只大鼠。空白组大鼠不进行任何处理。盐酸氟西汀组给予0.233 g/L盐酸氟西汀。归脾汤组给予1.72 g/mL归脾汤。电针组选择百会、印堂、气海、关元进行电针刺激。归脾汤联合电针组归脾汤用药方法同归脾汤组,电针方法同电针组。正常组及模型组子均给予等量的双蒸水。每组分别在造模后1周、2周时结束给药。对比糖水消耗水平、旷场实验评分及垂直评分、游泳实验不动时间、挣扎时间及游泳时间、血清HPA轴相关激素水平及大鼠脑组织中的5-HT含量。结果:与模型组相比,对照组、盐酸氟西汀组、归脾汤组、电针组大鼠在第1周、第2周时的糖水消耗水平、旷场实验评分、垂直评分、海马、额叶皮质中的5-HT水平较低,游泳实验不动时间、挣扎时间、游泳时间、促肾上腺皮质激素、促肾上腺皮质激素释放激素及皮质醇较高;与对照组相比,盐酸氟西汀组、归脾汤组、电针组大鼠呈相同趋势,与盐酸氟西汀组、归脾汤组、电针组相比,归脾汤联合电针组呈相同趋势(P<0.05)。盐酸氟西汀组、归脾汤组与电针组所有指标组间对比无差异(P>0.05)。结论:电针联合归脾汤可明显改善产后抑郁大鼠抑郁症状,可能与其可调节产后抑郁大鼠的HPA轴相关激素及5-HT水平有关。  相似文献   

17.
Treatment of the adult rats with selective serotonin (5-HT) reuptake inhibitor: fluoxetine and its complexes with glycyrrizhinic acid during 2 weeks (25 mg/kg/day) significantly increased plasma corticosterone levels that were measured after 5-min plus-maze. All the drugs decreased the content of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the striatum as well as 5-HT in the hippocampus. There was a significant negative correlation between 5-HT in the striatum and corticosterone levels. These data suggest that fluoxetine induces serotoninergic changes in the striatum that might be related to neuroendocrine and behavioural effects of the drug.  相似文献   

18.
19.
An extensive literature has documented adverse effects on mental health in anabolic androgenic steroids (AAS) abusers. Depression seems a common adverse reaction in AAS abusers. Recently it has been reported that in a rat model of AAS abuse stanozolol induces behavioural and biochemical changes related to the pathophysiology of major depressive disorder. In the present study, we used the model of AAS abuse to examine possible changes in the monoaminergic system, a neurobiological substrate of depression, in different brain areas of stanozolol-treated animals. Wistar rats received repeated injections of stanozolol (5mg/kg, s.c.), or vehicle (propylene glycol, 1ml/kg) once daily for 4weeks. Twenty-four hours after last injection, changes of dopamine (DA) and relative metabolite levels, homovanilic acid (HVA) and 3,4-dihydroxy phenylacetic acid (DOPAC), serotonin (5-HT) and its metabolite levels, 5-hydroxy indolacetic acid (5-HIAA), and noradrenaline (NA) amount were investigated in prefrontal cortex (PFC), nucleus accumbens (NAC), striatum (STR) and hippocampus (HIPP). The analysis of data showed that after chronic stanozolol, DA levels were increased in the HIPP and decreased in the PFC. No significant changes were observed in the STR or in the NAC. 5-HT and 5-HIAA levels were decreased in all brain areas investigated after stanozolol exposure; however, the 5-HIAA/5-HT ratio was not altered. Taken together, our data indicate that chronic use of stanozolol significantly affects brain monoamines leading to neurochemical modifications possibly involved in depression and stress-related states.  相似文献   

20.
Gender differences in susceptibility to chronic mild stress (CMS) and effects of venlafaxine in rats have been investigated in the current study. Male and female SD rats were exposed to CMS or CMS plus chronic venlafaxine administration (10 mg/kg, 21 days) in order to study depressive behavior in rats. Rats were tested in open field test and sucrose preference test to figure out gender differences in behavior. Then serum corticosterone and the expression of FKBP5 in hippocampus of rats were detected to explore the possible mechanism. The results showed that the CMS impact on behavioral parameters and corticosterone levels and response to venlafaxine were gender dependent. Female rats appeared more vulnerable in the dysregulation of HPA axis to CMS. Venlafaxine treatment normalized depressive-like behavior in both gender. However, venlafaxine treated male rats exhibited better improved explore behavior and anhedonia. FKBP5 might be involved in the explanation of gender differences in CMS and venlafaxine treatment. Male and female rats respond differently to chronic stress and venlafaxine continuous treatment. This results have guiding meaning in design of trials related to stress induced depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号